tan(θ)+cot(θ)=sin(θ)cos(θ)+cos(θ)sin(θ)=sin2(θ)+cos2(θ)cos(θ)sin(θ)=1cos(θ)sin(θ) ,sec(θ)csc(θ)=1cos(θ)⋅1sin(θ)=1cos(θ)sin(θ) .\tan(\theta)+\cot(\theta) = \dfrac{\sin(\theta)}{\cos(\theta)} + \dfrac{\cos(\theta)}{\sin(\theta)} = \dfrac{\sin^2(\theta) + \cos^2(\theta)}{\cos(\theta)\sin(\theta)} = \dfrac{1}{\cos(\theta)\sin(\theta)}\,, \\ \sec(\theta)\csc(\theta) = \dfrac{1}{\cos(\theta)}\cdot \dfrac{1}{\sin(\theta)} = \dfrac{1}{\cos(\theta)\sin(\theta)}\,.tan(θ)+cot(θ)=cos(θ)sin(θ)+sin(θ)cos(θ)=cos(θ)sin(θ)sin2(θ)+cos2(θ)=cos(θ)sin(θ)1,sec(θ)csc(θ)=cos(θ)1⋅sin(θ)1=cos(θ)sin(θ)1.
Therefore,
tan(θ)+cot(θ)=sec(θ)csc(θ).\tan(\theta)+\cot(\theta) = \sec(\theta)\csc(\theta) .tan(θ)+cot(θ)=sec(θ)csc(θ).
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments