sec(α)=1cos(α)sec(\alpha)=\frac 1 {cos(\alpha)}sec(α)=cos(α)1 . if sec(α)<0sec(\alpha)<0sec(α)<0 then cos(α)<0cos(\alpha)<0cos(α)<0 .
cos(α)=−1−sin2(α)=−1−(1519)2=−64289=−817cos(\alpha)=-\sqrt{1-sin^{2}(\alpha)}=-\sqrt{1-(\frac {15} {19})^{2}}=-\sqrt{\frac{64} {289}}=-\frac 8 {17}cos(α)=−1−sin2(α)=−1−(1915)2=−28964=−178
cot(α)=cos(α)sin(α)=−815cot(\alpha)=\frac {cos(\alpha)} {sin(\alpha)}=-\frac 8 {15}cot(α)=sin(α)cos(α)=−158
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments