Solution:
Formula of calculation curvature (for x=y):
k=(x′2+z′2)x′z′′−z′x′′; here z=f(x); and z′=dxdf(x); z′′=dx2d2f(x);
so, x′=1 and x′′=0; k=(1+z′2)z′′;
For torsion:
τ=(y′z′′−y′′z′)2+(x′′z′−x′z′′)2+(x′y′′−x′′y′)2x′′′(y′z′′−y′′z′)+y′′′(x′′z′−x′z′′)+z′′′(x′y′′−x′′y′);
x′′=0 and y=0;
So, τ=0.
Answer:
k=(1+z′2)z′′;
τ=0.
Comments