x 2 + y 2 + z 2 = 9 : k n 1 = ( 2 x , 2 y , 2 z ) = ( 4 , − 2 , 4 ) ⇒ n 1 = ( 4 , − 2 , 4 ) 4 2 + 2 2 + 4 2 = ( 2 3 , − 1 3 , 2 3 ) z = x 2 + y 2 − 3 : k n 2 = ( 2 x , 2 y , − 1 ) = ( 4 , − 2 , − 1 ) ⇒ n 2 = ( 4 , − 2 , − 1 ) 4 2 + 2 2 + 1 2 = ( 4 21 , − 2 21 , − 1 21 ) ( n 1 , n 2 ) = 1 3 21 ( 2 ⋅ 4 − 1 ⋅ ( − 2 ) + 2 ⋅ ( − 1 ) ) = 8 3 21 cos θ = 8 3 21 ⇒ θ = a cos 8 3 21 = 0.949716 ≈ 1 x^2+y^2+z^2=9: kn_1=\left( 2x,2y,2z \right) =\left( 4,-2,4 \right) \Rightarrow n_1=\frac{\left( 4,-2,4 \right)}{\sqrt{4^2+2^2+4^2}}=\left( \frac{2}{3},-\frac{1}{3},\frac{2}{3} \right) \\z=x^2+y^2-3:kn_2=\left( 2x,2y,-1 \right) =\left( 4,-2,-1 \right) \Rightarrow n_2=\frac{\left( 4,-2,-1 \right)}{\sqrt{4^2+2^2+1^2}}=\left( \frac{4}{\sqrt{21}},-\frac{2}{\sqrt{21}},-\frac{1}{\sqrt{21}} \right) \\\left( n_1,n_2 \right) =\frac{1}{3\sqrt{21}}\left( 2\cdot 4-1\cdot \left( -2 \right) +2\cdot \left( -1 \right) \right) =\frac{8}{3\sqrt{21}}\\\cos \theta =\frac{8}{3\sqrt{21}}\Rightarrow \theta =\mathrm{a}\cos \frac{8}{3\sqrt{21}}=0.949716\approx 1 x 2 + y 2 + z 2 = 9 : k n 1 = ( 2 x , 2 y , 2 z ) = ( 4 , − 2 , 4 ) ⇒ n 1 = 4 2 + 2 2 + 4 2 ( 4 , − 2 , 4 ) = ( 3 2 , − 3 1 , 3 2 ) z = x 2 + y 2 − 3 : k n 2 = ( 2 x , 2 y , − 1 ) = ( 4 , − 2 , − 1 ) ⇒ n 2 = 4 2 + 2 2 + 1 2 ( 4 , − 2 , − 1 ) = ( 21 4 , − 21 2 , − 21 1 ) ( n 1 , n 2 ) = 3 21 1 ( 2 ⋅ 4 − 1 ⋅ ( − 2 ) + 2 ⋅ ( − 1 ) ) = 3 21 8 cos θ = 3 21 8 ⇒ θ = a cos 3 21 8 = 0.949716 ≈ 1
Comments