Question #217686
Prove that the property being a Hausdroff space is a topological and hereditary property
1
Expert's answer
2021-07-22T18:00:13-0400

Let (X,τ) be a Hausdorff topological space and let x,y X. Since AX. So since x is Hausdroff there exists open neighbourhood u of X and v of Y such that uv=Since u and v contains x and y. We have that Au and Av are open neighbourhoodsof X and Y in A. Moreover we see that:(AU)(AC)=A(uv)=A=So for all x,y A, there exists open neighbourhoods so that A u and Av.So (A, τ) is Hausdroff. This shows that the Hausdroff property is hereditary. \text{Let (X,$\tau$) be a Hausdorff topological space and let x,y $\in X.$ Since $A \subseteq X.$ So since }\\\text{x is Hausdroff there exists open neighbourhood u of X and v of Y such that }\\u\cap v=\empty\\\text{Since u and v contains x and y. We have that $A \cap u$ and $A \cap v$ are open neighbourhoods}\\\text{of X and Y in A. Moreover we see that:}\\ (A \cap U) \cap(A \cap C)=A\cap(u\cap v)=A \cap \empty=\empty\\\text{So for all x,y $\in A$, there exists open neighbourhoods so that A $\cap u$ and $A \cap v$= $\empty$.}\\\text{So (A, $\tau$) is Hausdroff. This shows that the Hausdroff property is hereditary. }


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS