G ^ = − 2 i + t j − 3 t k F ^ = s i n t i + c o s t j \hat{G}=-2i+tj-3tk
\\
\hat{F}=sin t i+cos t j G ^ = − 2 i + t j − 3 t k F ^ = s in t i + cos t j
G ^ × F ^ = ∣ i j k − 2 t − 3 t s i n t c o s t 0 ∣ \hat{G}\times \hat{F}=\begin{vmatrix} i &j &k\\-2&t&-3t\\sint &cost &0\end{vmatrix} G ^ × F ^ = ∣ ∣ i − 2 s in t j t cos t k − 3 t 0 ∣ ∣
= i ( 0 + 3 t c o s t ) − j ( 0 + 3 t s i n t ) + k ( − 2 c o s t + t s i n t ) = 3 t c o s t i − 3 t s i n t j + ( t s i n t − 2 c o s t ) k =i(0+3tcost)-j(0+3tsint)+k(-2cost +tsint)\\[9pt]=3tcosti-3tsint j +(tsint-2cost)k = i ( 0 + 3 t cos t ) − j ( 0 + 3 t s in t ) + k ( − 2 cos t + t s in t ) = 3 t cos t i − 3 t s in t j + ( t s in t − 2 cos t ) k
⇒ d ( G ^ × F ^ ) d t = 3 ( c o s t − t s i n t ) i − 3 ( s i n t + t c o s t ) j + ( s i n t + t c o s t + 2 s i n t ) k \Rightarrow \dfrac{d(\hat{G}\times \hat{F})}{dt}=3(cost-tsint)i-3(sint+tcost)j+(sint+tcost+2sint)k ⇒ d t d ( G ^ × F ^ ) = 3 ( cos t − t s in t ) i − 3 ( s in t + t cos t ) j + ( s in t + t cos t + 2 s in t ) k
= 3 ( c o s t − t s i n t ) i − 3 ( s i n t + t c o s t ) + ( 3 s i n t + t c o s t ) k =3(cost-tsint)i-3(sint+tcost)+(3sint+tcost)k = 3 ( cos t − t s in t ) i − 3 ( s in t + t cos t ) + ( 3 s in t + t cos t ) k
Comments