Question #192891

Consider a plane with the surface patch σ(u, v) = (1+2u+3v, u-v,-2+u-4v). Verify the Gauss equations for σ.




1
Expert's answer
2021-05-18T07:03:57-0400

K=LNM2EGF2E=σuσuF=σuσvG=σvσvL=σuunM=σuvnN=σvvnK = \dfrac{LN-M^2}{EG-F^2} \\ E = \sigma_{u} \cdot \sigma_{u} \\ F = \sigma_{u} \cdot \sigma_{v} \\ G = \sigma_{v} \cdot \sigma_{v} \\ L = \sigma_{uu} \cdot \mathcal{n} \\ M = \sigma_{uv} \cdot \mathcal{n} \\ N = \sigma_{vv} \cdot \mathcal{n}

σu=(2,1,1)σv=(3,1,4)σuu=(0,0,0)σuv=(0,0,0)σvv=(0,0,0)\sigma_u = (2,1,1) \\ \sigma_v = (3,-1,-4) \\ \sigma_{uu} = (0,0,0) \\ \sigma_{uv} = (0,0,0) \\ \sigma_{vv} = (0,0,0)

E=σuσu=2(2)+1(1)+1(1)=6E = \sigma_{u} \cdot \sigma_{u} = 2(2)+1(1)+1(1) = 6

F=σuσv=2(3)+1(1)+1(4)=1F = \sigma_{u} \cdot \sigma_{v} = 2(3) +1(-1)+1(-4) = 1

G=σvσv=3(3)+(1)(1)+(4)(4)=26G = \sigma_{v} \cdot \sigma_{v} = 3(3)+(-1)(-1)+(-4)(-4) = 26

L=0M=0N=0K=0(0)06(26)1=0L = 0 \\ M =0 \\ N = 0 \\ K = \dfrac{0(0)-0}{6(26)-1} = 0



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS