Question #143635
Calculate the principal, Gaussian, and mean curvatures of the surface of revolution
σ(u, v) = (f(u) cos v, f(u) sin v, g(u)), where f, g are smooth real-valued functions
with f > 0.
1
Expert's answer
2020-11-15T18:03:07-0500

σu=(fcos v,fsin v,g),\sigma_u=(f' cos \ v, f' sin \ v, g' ), σv=(fsin v,fcos v,0),\sigma_v=(-f sin \ v, f cos \ v, 0 ), σuu=(fcos v,fsin v,g),\sigma_{uu}=(f'' cos \ v, f'' sin \ v, g'' ), σvv=(fcos v,fsin v,0).\sigma_{vv}=(-f cos \ v, f sin \ v, 0 ). We note σuσv=0.\sigma_u\cdot\sigma_v=0. n^=σu×σvσu×σv=\hat{n}=\frac{\sigma_u\times\sigma_v}{||\sigma_u\times\sigma_v||}= n^=(fgcos v,fgsin v,ff)g2f2+f2f2.\hat{n}=\frac{(fg'cos \ v , -fg' sin \ v ,ff')}{\sqrt{g'^2 f^2+f'^2f^2}}. Hence σuun^=ffgfgfg2+f2\sigma_{uu}\cdot \hat{n}=-\frac{f}{|f|}\frac{g''f'-g'f''}{\sqrt{g'^2+f'^2}} , σvvn^=fgg2+f2.\sigma_{vv}\cdot \hat{n}= -\frac{|f|g'}{\sqrt{g'^2+f'^2}}. Hence, we get, that the principal curvatures are σuun^σuσu=ffgfgf(g2+f2)3/2\frac{\sigma_{uu}\cdot \hat{n}}{\sigma_u\cdot\sigma_u}=-\frac{f}{|f|}\frac{g''f'-g'f''}{(g'^2+f'^2)^{3/2}} and σvvn^σvσv=gfg2+f2\frac{\sigma_{vv}\cdot \hat{n}}{\sigma_v\cdot\sigma_v}=-\frac{g'}{|f|\sqrt{g'^2+f'^2}} .

Hence the Gaussian curvature is product of the two= 1fg(gfgf)(g2+f2)2\frac{1}{f}\frac{g'(g''f'-g'f'')}{(g'^2+f'^2)^{2}} and mean curvature = mean of the two= f(gf+gf)g(g2+f2)2f(g2+f2)3/2\frac{f(-g''f'+g'f'')-g'(g'^2+f'^2)}{2|f|(g'^2+f'^2)^{3/2}}


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS