(a) "\\sigma (u,v)=(u,v,u^2+v^2)" , "P=(1,\\sqrt{2}, 3)=\\sigma(1,\\sqrt{2})"
We have that "\\sigma_u=(1,0,2u)" and "\\sigma_v=(0,1,2v)" .
So, "\\sigma_u(1,\\sqrt{2})=(1,0,2)" and "\\sigma _v(1,\\sqrt{2})=(0,1,2\\sqrt{2})"
Now we find the normal to the plane
"n=\\sigma_u(1,\\sqrt{2})\\times \\sigma_v(1,\\sqrt{2})=\\begin{vmatrix}i &j&k\n\\\\ 1&0&2\\\\\n0&1&2\\sqrt{2}\n\\end{vmatrix}=(-2,-2\\sqrt{2},1)"
The equation of the tangent plane at point "P" is:
"-2(x-1)-2\\sqrt{2}(y-\\sqrt{2})+1(z-3)=0"
or "2x+2\\sqrt{2}y-z-3=0"
(b) "\\sigma(r,\\theta)=(r\\cos \\theta,r\\sin \\theta, 2\\theta)" , "P(\\sqrt{3}, 1,\\pi\/3)=\\sigma(2,\\pi\/6)"
We have that "\\sigma_r=(\\cos\\theta,\\sin\\theta, 0)" and "\\sigma_\\theta=(-r\\sin\\theta, r\\cos\\theta,2)"
So, "\\sigma_r(2,\\pi\/6)=(\\sqrt{3}\/2,1\/2,0)" and "\\sigma_\\theta(2,\\pi\/6)=(-1,\\sqrt{3},2)"
Now we find the normal to the plane
"n=\\sigma_r(2,\\pi\/6)\\times \\sigma_\\theta(2,\\pi\/6)=\\begin{vmatrix}i &j&k\n\\\\ \\sqrt{3}\/2&1\/2&0\\\\\n-1&\\sqrt{3}&2\n\\end{vmatrix}=(1,-\\sqrt{3},2)"
The equation of the tangent plane at point "P" is:
"1(x-\\sqrt{3})-\\sqrt{3}(y-1)+2(z-\\pi\/3)=0"
or "x-\\sqrt{3}y+2z-2\\pi\/3=0"
Answer: (a) "2x+2\\sqrt{2}y-z-3=0"
(b) "x-\\sqrt{3}y+2z-2\\pi\/3=0"
Comments
Leave a comment