Question #133056
Find the unit tangent vector at the indicated point of the vector function
r(t)=e^(12t)cost i+e^(12t)sint j+e^(12t) k

T(π/2)=<_,_,_>
1
Expert's answer
2020-09-23T17:52:26-0400

We have-

r(t)=e12tcos(t)  i+e12tsin(t)  j+e12t  k\mathbf{r(t)=e^{12t}cos(t)\;i+e^{12t}sin(t)\;j+e^{12t}\;k}


  v(t)=r(t)=(12e12tcos(t)+e12t(sin(t)))  i\mathbf{ \therefore \;v(t)=r'(t)=(12e^{12t}cos(t)+e^{12t}(-sin(t)))\;i}


+(12e12tsin(t)+e12tcos(t))  j+12e12t  k\mathbf{+(12e^{12t}sin(t)+e^{12t}cos(t))\;j+12e^{12t}\; k}


    r(t)=e12t[(12cos(t)sin(t))  i+(12sin(t)+cos(t))  j\implies \mathbf{r'(t)=e^{12t}[(12cos(t)-sin(t))\;i+(12sin(t)+cos(t))\;j}


+12  k]\mathbf{+12\;k]}


and v(t)=e24t[(144.cos2(t)+sin2(t)24.cos(t)sin(t))+\mathbf{\mid\mid v(t) \mid\mid=\sqrt{e^{24t}[(144.cos^2(t)+sin^2(t)-24.cos(t)sin(t))+}}


+(144.sin2(t)+cos2(t)+24.cos(t)sin(t))+144]\mathbf{\sqrt{\\ \\+(144.sin^2(t)+cos^2(t)+24.cos(t)sin(t))+144]}}


    v(t)=e12t144(cos2(t)+sin2(t))+(cos2(t)+sin2(t))+144\mathbf{\implies \mid\mid v(t) \mid\mid=e^{12t}\sqrt{144(cos^2(t)+sin^2(t))+(cos^2(t)+sin^2(t))+144}}


    v(t)=e12t144+1+144=e12t289=17e12t\mathbf{\implies \mid\mid v(t) \mid\mid=e^{12t}\sqrt{144+1+144}=e^{12t}\sqrt{289}=17e^{12t}}


To find the unit tangent vector, we just divide


T(t)=v(t)v(t)=e12t[(12cos(t)sin(t))  i+(12sin(t)+cos(t))  j+12  k]17e12t\mathbf{T(t)=\dfrac{v(t)}{||v(t)||}=\dfrac{e^{12t}[(12cos(t)-sin(t))\;i+(12sin(t)+cos(t))\;j+12\;k]}{17e^{12t}}}


=[(12cos(t)sin(t))  i+(12sin(t)+cos(t))  j+12  k]17\mathbf{=\dfrac{[(12cos(t)-sin(t))\;i+(12sin(t)+cos(t))\;j+12\;k]}{17}}


To find T(pi/2), plug in (pi/2) to get-


T(π/2)=[(12cos(π/2)sin(π/2))  i+(12sin(π/2)+cos(π/2))  j+12  k]17\mathbf{T(\pi/2)=\dfrac{[(12cos(\pi/2)-sin(\pi/2))\;i+(12sin(\pi/2)+cos(\pi/2))\;j+12\;k]}{17}}


=(01)  i+(12+0)  j+12  k17=  i+12  j+12  k17\mathbf{=\dfrac{(0-1)\;i+(12+0)\;j+12\;k}{17}=\dfrac{-\;i+12\;j+12\;k}{17}}


    T(π/2)=(117)i+(1217)j+(1217)k\mathbf{\implies T(\pi/2)=\bigg(\dfrac{-1}{17}\bigg)i+\bigg(\dfrac{12}{17}\bigg)j+\bigg(\dfrac{12}{17}\bigg)k} ....................Ans.











Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS