We have-
r(t)=e12tcos(t)i+e12tsin(t)j+e12tk
∴v(t)=r′(t)=(12e12tcos(t)+e12t(−sin(t)))i
+(12e12tsin(t)+e12tcos(t))j+12e12tk
⟹r′(t)=e12t[(12cos(t)−sin(t))i+(12sin(t)+cos(t))j
+12k]
and ∣∣v(t)∣∣=e24t[(144.cos2(t)+sin2(t)−24.cos(t)sin(t))+
+(144.sin2(t)+cos2(t)+24.cos(t)sin(t))+144]
⟹∣∣v(t)∣∣=e12t144(cos2(t)+sin2(t))+(cos2(t)+sin2(t))+144
⟹∣∣v(t)∣∣=e12t144+1+144=e12t289=17e12t
To find the unit tangent vector, we just divide
T(t)=∣∣v(t)∣∣v(t)=17e12te12t[(12cos(t)−sin(t))i+(12sin(t)+cos(t))j+12k]
=17[(12cos(t)−sin(t))i+(12sin(t)+cos(t))j+12k]
To find T(pi/2), plug in (pi/2) to get-
T(π/2)=17[(12cos(π/2)−sin(π/2))i+(12sin(π/2)+cos(π/2))j+12k]
=17(0−1)i+(12+0)j+12k=17−i+12j+12k
⟹T(π/2)=(17−1)i+(1712)j+(1712)k ....................Ans.
Comments