We have-
r ( t ) = e 12 t c o s ( t ) i + e 12 t s i n ( t ) j + e 12 t k \mathbf{r(t)=e^{12t}cos(t)\;i+e^{12t}sin(t)\;j+e^{12t}\;k} r ( t ) = e 12t cos ( t ) i + e 12t sin ( t ) j + e 12t k
∴ v ( t ) = r ′ ( t ) = ( 12 e 12 t c o s ( t ) + e 12 t ( − s i n ( t ) ) ) i \mathbf{ \therefore \;v(t)=r'(t)=(12e^{12t}cos(t)+e^{12t}(-sin(t)))\;i} ∴ v ( t ) = r ′ ( t ) = ( 12 e 12t cos ( t ) + e 12t ( − sin ( t ))) i
+ ( 12 e 12 t s i n ( t ) + e 12 t c o s ( t ) ) j + 12 e 12 t k \mathbf{+(12e^{12t}sin(t)+e^{12t}cos(t))\;j+12e^{12t}\; k} + ( 12 e 12t sin ( t ) + e 12t cos ( t )) j + 12 e 12t k
⟹ r ′ ( t ) = e 12 t [ ( 12 c o s ( t ) − s i n ( t ) ) i + ( 12 s i n ( t ) + c o s ( t ) ) j \implies \mathbf{r'(t)=e^{12t}[(12cos(t)-sin(t))\;i+(12sin(t)+cos(t))\;j} ⟹ r ′ ( t ) = e 12t [( 12cos ( t ) − sin ( t )) i + ( 12sin ( t ) + cos ( t )) j
+ 12 k ] \mathbf{+12\;k]} + 12 k ]
and ∣ ∣ v ( t ) ∣ ∣ = e 24 t [ ( 144. c o s 2 ( t ) + s i n 2 ( t ) − 24. c o s ( t ) s i n ( t ) ) + \mathbf{\mid\mid v(t) \mid\mid=\sqrt{e^{24t}[(144.cos^2(t)+sin^2(t)-24.cos(t)sin(t))+}} ∣∣ v ( t ) ∣∣= e 24t [( 144.co s 2 ( t ) + si n 2 ( t ) − 24.cos ( t ) sin ( t )) +
+ ( 144. s i n 2 ( t ) + c o s 2 ( t ) + 24. c o s ( t ) s i n ( t ) ) + 144 ] \mathbf{\sqrt{\\
\\+(144.sin^2(t)+cos^2(t)+24.cos(t)sin(t))+144]}} + ( 144.si n 2 ( t ) + co s 2 ( t ) + 24.cos ( t ) sin ( t )) + 144 ]
⟹ ∣ ∣ v ( t ) ∣ ∣ = e 12 t 144 ( c o s 2 ( t ) + s i n 2 ( t ) ) + ( c o s 2 ( t ) + s i n 2 ( t ) ) + 144 \mathbf{\implies \mid\mid v(t) \mid\mid=e^{12t}\sqrt{144(cos^2(t)+sin^2(t))+(cos^2(t)+sin^2(t))+144}} ⟹ ∣∣ v ( t ) ∣∣= e 12t 144 ( co s 2 ( t ) + si n 2 ( t )) + ( co s 2 ( t ) + si n 2 ( t )) + 144
⟹ ∣ ∣ v ( t ) ∣ ∣ = e 12 t 144 + 1 + 144 = e 12 t 289 = 17 e 12 t \mathbf{\implies \mid\mid v(t) \mid\mid=e^{12t}\sqrt{144+1+144}=e^{12t}\sqrt{289}=17e^{12t}} ⟹ ∣∣ v ( t ) ∣∣= e 12t 144 + 1 + 144 = e 12t 289 = 17 e 12t
To find the unit tangent vector, we just divide
T ( t ) = v ( t ) ∣ ∣ v ( t ) ∣ ∣ = e 12 t [ ( 12 c o s ( t ) − s i n ( t ) ) i + ( 12 s i n ( t ) + c o s ( t ) ) j + 12 k ] 17 e 12 t \mathbf{T(t)=\dfrac{v(t)}{||v(t)||}=\dfrac{e^{12t}[(12cos(t)-sin(t))\;i+(12sin(t)+cos(t))\;j+12\;k]}{17e^{12t}}} T ( t ) = ∣∣v ( t ) ∣∣ v ( t ) = 17 e 12t e 12t [( 12cos ( t ) − sin ( t )) i + ( 12sin ( t ) + cos ( t )) j + 12 k ]
= [ ( 12 c o s ( t ) − s i n ( t ) ) i + ( 12 s i n ( t ) + c o s ( t ) ) j + 12 k ] 17 \mathbf{=\dfrac{[(12cos(t)-sin(t))\;i+(12sin(t)+cos(t))\;j+12\;k]}{17}} = 17 [( 12cos ( t ) − sin ( t )) i + ( 12sin ( t ) + cos ( t )) j + 12 k ]
To find T(pi/2), plug in (pi/2) to get-
T ( π / 2 ) = [ ( 12 c o s ( π / 2 ) − s i n ( π / 2 ) ) i + ( 12 s i n ( π / 2 ) + c o s ( π / 2 ) ) j + 12 k ] 17 \mathbf{T(\pi/2)=\dfrac{[(12cos(\pi/2)-sin(\pi/2))\;i+(12sin(\pi/2)+cos(\pi/2))\;j+12\;k]}{17}} T ( π /2 ) = 17 [( 12cos ( π /2 ) − sin ( π /2 )) i + ( 12sin ( π /2 ) + cos ( π /2 )) j + 12 k ]
= ( 0 − 1 ) i + ( 12 + 0 ) j + 12 k 17 = − i + 12 j + 12 k 17 \mathbf{=\dfrac{(0-1)\;i+(12+0)\;j+12\;k}{17}=\dfrac{-\;i+12\;j+12\;k}{17}} = 17 ( 0 − 1 ) i + ( 12 + 0 ) j + 12 k = 17 − i + 12 j + 12 k
⟹ T ( π / 2 ) = ( − 1 17 ) i + ( 12 17 ) j + ( 12 17 ) k \mathbf{\implies T(\pi/2)=\bigg(\dfrac{-1}{17}\bigg)i+\bigg(\dfrac{12}{17}\bigg)j+\bigg(\dfrac{12}{17}\bigg)k} ⟹ T ( π /2 ) = ( 17 − 1 ) i + ( 17 12 ) j + ( 17 12 ) k ....................Ans.
Comments