Let’s consider r(u)=⟨2u, u2+3, 2u2+5⟩
r(1)=⟨2,4,7⟩
The unit tangent vector is ∣r(u)∣r′(u) .
r′(u)=⟨2, 2u, 4u⟩, r′(1)=⟨2, 2, 4⟩, ∣r′(1)∣=22+22+42=26
∣r(1)∣r′(1)=261⟨2, 2, 4⟩=61⟨1, 1, 2⟩ .
Answer: the unit tangent vector at the point (2,4,7) is 61⟨1, 1, 2⟩ .
Comments