Question #122826
Determine the unit tangent vector at the point (2,4,7) for the circle with parametric equations x=2u, y=u^2 +3 and z=2u^2 +5
1
Expert's answer
2020-06-23T14:54:02-0400

Let’s consider r(u)=2u, u2+3, 2u2+5r(u)=\langle2u, \ u^2+3, \ 2u^2+5\rangle

r(1)=2,4,7r(1)=\langle2,4,7\rangle

The unit tangent vector is r(u)r(u)\frac{r^{\prime}(u)}{|r(u)|} .

r(u)=2, 2u, 4u,  r(1)=2, 2, 4,  r(1)=22+22+42=26r^{\prime}(u)=\langle 2,\ 2u,\ 4u\rangle, \ \ r^\prime (1)=\langle 2,\ 2, \ 4\rangle, \ \ |r^\prime (1)|=\sqrt{2^2+2^2+4^2}=2\sqrt{6}


r(1)r(1)=1262, 2, 4=161, 1, 2\frac{r^{\prime}(1)}{|r(1)|}=\frac{1}{2\sqrt{6}}\langle 2,\ 2,\ 4\rangle =\frac{1}{\sqrt 6}\langle 1,\ 1,\ 2\rangle .


Answer: the unit tangent vector at the point (2,4,7)(2,4,7)  is 161, 1, 2\frac{1}{\sqrt 6}\langle 1,\ 1,\ 2\rangle .



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS