Question #117901
Prove or disprove any metric defined on X(#0) induces a topology on X
1
Expert's answer
2020-05-26T20:00:50-0400

Let (X,ρ)(X, \rho) be a metric space with metric ρ\rho. Let's define the following:

Bε(x):=yXρ(x,y)<εB_{\varepsilon}(x) := y \in X | \rho(x,y) <\varepsilon. Let's show, that for any metric space (X,ρ)(X, \rho) : Bε(x):=yXρ(x,y)<ε,xX,ε>0B_{\varepsilon}(x) := y \in X | \rho(x,y) <\varepsilon, x \in X, \varepsilon > 0 is a base for some topology. If we prove this, it will be enough, since any base generates topology on XX, that has, as open sets, all unions of elements of the base.

So, to prove that the defined above set is a base we will check if base criterias are true, namely:

1) x,εBε(x)=X.\bigcup_{x,\varepsilon}B_{\varepsilon}(x) = X.

2) If zBε(x)Bδ(y),z \in B_{\varepsilon}(x) \cap B_{\delta}(y), then there exist such element of our base B0B_0, that zB0z \in B_0 and B0Bε(x)Bδ(y)B_0 \subset B_{\varepsilon}(x) \cap B_{\delta}(y).


1) For a given xXx \in X, X=n=1Bn(x)X = \bigcup_{n=1}^{\infin}B_n(x). Therefore, x,εBε(x)=X.\bigcup_{x,\varepsilon}B_{\varepsilon}(x) = X.

2) Let zBε(x)Bδ(y)z \in B_{\varepsilon}(x) \cap B_{\delta}(y). Let r:=min(ερ(x,z),δρ(y,z)).r := min(\varepsilon - \rho(x,z), \delta - \rho(y, z)). Then, Br(z)Bε(x)Bδ(y)B_r(z) \subset B_{\varepsilon}(x) \cap B_{\delta}(y).

So, we proved that the defined set is a base for some topology for (X,ρ).(X, \rho).


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS