First, the equation of a circle centered at the origin "p.O\\left(0;0\\right)" and radius "R=a>0" has the form
"x^2+y^2=a^2"
For example, "a=3"
Secondly, from physics we know the relationship between the velocity vector and the radius vector
"\\overrightarrow{r}=x(t)\\cdot\\overrightarrow{i}+y(t)\\cdot\\overrightarrow{j}\\longrightarrow\\\\[0.3cm]\n\\overrightarrow{v}=\\frac{d\\overrightarrow{r}}{dt}=\\frac{dx(t)}{dt}\\cdot\\overrightarrow{i}+\\frac{dy(t)}{dt}\\cdot\\overrightarrow{j}\\\\[0.3cm]\n\\overrightarrow{v}=v_x(t)\\cdot\\overrightarrow{i}+v_y(t)\\cdot\\overrightarrow{j}\\longrightarrow\\\\[0.3cm]\n\\left|\\overrightarrow{v}\\right|=\\sqrt{v_x^2+v_y^2}"
In our case, the natural variable "t-" time was replaced by the general variable "s" .
"\\overrightarrow{v}\\equiv\\overrightarrow{\\delta}(s)=\\underbrace{\\left(a\\cos as\\right)}_{\\delta_x(s)}\\cdot\\overrightarrow{i}+\\underbrace{\\left(a\\sin as\\right)}_{\\delta_y(s)}\\cdot\\overrightarrow{i}\\longrightarrow\\\\[0.3cm]\n\\left|\\overrightarrow{\\delta}(s)\\right|=\\sqrt{\\delta_x^2(s)+\\delta_y^2(s)}=\\sqrt{\\left(a\\cos as\\right)^2+\\left(a\\sin as\\right)^2}=\\\\[0.3cm]\n=\\sqrt{a^2\\left(\\cos^2as+\\sin^2as\\right)}=a\\cdot\\sqrt{1}=a"
Conclusion,
"\\left|\\overrightarrow{\\delta(s)}\\right|=\\left\\{\\begin{array}{l}\n\\text{is a unit speed},\\quad\\text{if}\\quad a=1\\\\[0.3cm]\n\\text{is not a unit speed},\\quad\\text{if}\\quad a\\neq1\n\\end{array}\\right."
Comments
Leave a comment