2019-12-02T04:52:43-05:00
In a normal distribution 9.85% of the values are under 40 and 89.97% of the values are under 60. Find the point of inflection of the distribution
1
2019-12-09T12:26:43-0500
P ( Z < Z 1 ) = 0.0985 P(Z<Z_1)=0.0985 P ( Z < Z 1 ) = 0.0985
Z 1 = 40 − μ σ = − 1.29 Z_1=\frac{40-\mu}{\sigma}=-1.29 Z 1 = σ 40 − μ = − 1.29
P ( Z < Z 2 ) = 0.8997 P(Z<Z_2)=0.8997 P ( Z < Z 2 ) = 0.8997
Z 2 = 60 − μ σ = 1.28 Z_2=\frac{60-\mu}{\sigma}=1.28 Z 2 = σ 60 − μ = 1.28
60 − μ 40 − μ = − 1.28 1.29 \frac{60-\mu}{40-\mu}=-\frac{1.28}{1.29} 40 − μ 60 − μ = − 1.29 1.28
μ = 50.0 \mu=50.0 μ = 50.0 Thus,
60 − 50 σ = 1.28 \frac{60-50}{\sigma}=1.28 σ 60 − 50 = 1.28
σ = 7.8 \sigma=7.8 σ = 7.8 Points of inflection are
x = 50 − 7.8 = 42.2 x=50-7.8=42.2 x = 50 − 7.8 = 42.2
x ′ = 50 + 7.8 = 57.8 x'=50+7.8=57.8 x ′ = 50 + 7.8 = 57.8
Need a fast expert's response?
Submit order
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS !
Comments