Given that X and Yare two independent random variables
E(X)=1,E(Y)=0,Var(X)=4,Var(Y)=2W=2X+Y+1,Z=3X+Ya) Distributive property of expected value: for any rv X,Y and any constants,a,b,c
E(aX+bY+c)=aE(X)+b(Y)+c
E(W)=E(2X+Y+1)=2E(X)+E(Y)+1==2(1)+0+1=3
E(Z)=E(3X+Y)=3E(X)+E(Y)==3(1)+0=3 b) If X is any random variable and c is any constant, then
Var(cX)=c2Var(X)Var(X+c)=Var(X) If Xand Yare two independent random variables, then
Var(X+Y)=Var(X)+Var(Y)
Var(W)=Var(2X+Y+1)=4Var(X)+Var(Y)==4(4)+2=18
c) For any two random variables X and Y,
Cov(X,Y)=E(XY)−μXμYCov(X,Y)=Cov(Y,X)Cov(X,X)=Var(X)If X and Y are independent, then Cov(X,Y)=0. by observing that E(XY)=E(X)E(Y)
Distributive property of covariance: for any rv X,Y,Z and any constants, a, b, c,
Cov(aX+bY+c,Z)=aCov(X,Z)+bCov(Y,Z)
Cov(W,Z)=Cov(Z,W)==Cov(2X+Y+1,3X+Y)==2Cov(X,3X+Y)+Cov(Y,3X+Y)==6Cov(X,X)+2Cov(X,Y)+3Cov(Y,X)+Cov(Y,Y)==6Var(X)+5Cov(X,Y)+Var(Y)
Cov(W,Z)=6(4)+5(0)+2=26
Comments