CHEBYSHEV’S INEQUALITY
Let X X X be a discrete rv with mean μ \mu μ and standard deviation σ \sigma σ . Then, for any k ≥ 1 , k\geq1, k ≥ 1 ,
P ( ∣ X − μ ∣ ≥ k σ ) ≤ 1 k 2 P(|X-\mu|\geq k\sigma)\leq{1 \over k^2} P ( ∣ X − μ ∣ ≥ kσ ) ≤ k 2 1 Given that μ = 64.5 , σ 2 = 144 \mu=64.5, \sigma^2=144 μ = 64.5 , σ 2 = 144
a ) P ( 44 < X < 85 ) a)\ \ P(44<X<85) a ) P ( 44 < X < 85 )
σ = 144 = 12 \sigma=\sqrt{144}=12 σ = 144 = 12
85 − 44 2 = 20.5 {85-44 \over 2}=20.5 2 85 − 44 = 20.5
k = 20.5 12 k={20.5 \over 12} k = 12 20.5
P ( 44 < X < 85 ) = 1 − P ( ∣ X − μ ∣ ≥ k σ ) = P(44<X<85)=1-P(|X-\mu|\geq k\sigma)= P ( 44 < X < 85 ) = 1 − P ( ∣ X − μ ∣ ≥ kσ ) =
= 1 − P ( ∣ X − 64.5 ∣ ≥ 20.5 12 ⋅ 12 ) ≥ 1 − 1 ( 20.5 / 12 ) 2 =1-P\bigg(|X-64.5|\geq {20.5 \over 12}\cdot 12\bigg)\geq1-{1 \over (20.5/12)^2} = 1 − P ( ∣ X − 64.5∣ ≥ 12 20.5 ⋅ 12 ) ≥ 1 − ( 20.5/12 ) 2 1
P ( 44 < X < 85 ) > 0.6573 P(44<X<85)>0.6573 P ( 44 < X < 85 ) > 0.6573
b ) P ( 36 < X < 93 ) b) P(36<X<93) b ) P ( 36 < X < 93 )
σ = 144 = 12 \sigma=\sqrt{144}=12 σ = 144 = 12
93 − 36 2 = 28.5 {93-36 \over 2}=28.5 2 93 − 36 = 28.5
k = 28.5 12 k={28.5 \over 12} k = 12 28.5
P ( 36 < X < 93 ) = 1 − P ( ∣ X − μ ∣ ≥ k σ ) = P(36<X<93)=1-P(|X-\mu|\geq k\sigma)= P ( 36 < X < 93 ) = 1 − P ( ∣ X − μ ∣ ≥ kσ ) =
= 1 − P ( ∣ X − 64.5 ∣ ≥ 28.5 12 ⋅ 12 ) ≥ 1 − 1 ( 28.5 / 12 ) 2 =1-P\bigg(|X-64.5|\geq {28.5 \over 12}\cdot 12\bigg)\geq1-{1 \over (28.5/12)^2} = 1 − P ( ∣ X − 64.5∣ ≥ 12 28.5 ⋅ 12 ) ≥ 1 − ( 28.5/12 ) 2 1
P ( 36 < X < 93 ) > 0.8227 P(36<X<93)>0.8227 P ( 36 < X < 93 ) > 0.8227
Comments