Question #99286
Problem 1: Suppose is a random variable with mean 64.5 and variance 144. Use Chebyshev’s inequality to approximate the following probabilities.
1
Expert's answer
2019-11-25T12:00:25-0500

CHEBYSHEV’S INEQUALITY

Let XX be a discrete rv with mean μ\mu and standard deviation σ\sigma. Then, for any k1,k\geq1,


P(Xμkσ)1k2P(|X-\mu|\geq k\sigma)\leq{1 \over k^2}

Given that μ=64.5,σ2=144\mu=64.5, \sigma^2=144

a)  P(44<X<85)a)\ \ P(44<X<85)


σ=144=12\sigma=\sqrt{144}=12

85442=20.5{85-44 \over 2}=20.5

k=20.512k={20.5 \over 12}

P(44<X<85)=1P(Xμkσ)=P(44<X<85)=1-P(|X-\mu|\geq k\sigma)=

=1P(X64.520.51212)11(20.5/12)2=1-P\bigg(|X-64.5|\geq {20.5 \over 12}\cdot 12\bigg)\geq1-{1 \over (20.5/12)^2}

P(44<X<85)>0.6573P(44<X<85)>0.6573

b)P(36<X<93)b) P(36<X<93)


σ=144=12\sigma=\sqrt{144}=12

93362=28.5{93-36 \over 2}=28.5

k=28.512k={28.5 \over 12}

P(36<X<93)=1P(Xμkσ)=P(36<X<93)=1-P(|X-\mu|\geq k\sigma)=

=1P(X64.528.51212)11(28.5/12)2=1-P\bigg(|X-64.5|\geq {28.5 \over 12}\cdot 12\bigg)\geq1-{1 \over (28.5/12)^2}

P(36<X<93)>0.8227P(36<X<93)>0.8227


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS