Question #99283
Problem 1 : The joint probability distribution of two random variables X and Y is given in the following table

Y
X 0 1 2 3
f(x)
2 1/12 1/12 1/12 1/12
3 1/12 1/6 1/12 0
4 1/12 1/12 0 1/6
f(y)
a) Find the marginal density of X and the marginal density of Y. (add them to the above table)
b) Are X and Y independent?
c) Compute the P{Y>1| X>2}
d) Compute the expected value of X.
e) Compute the probability that X is greater or equal to Y+1.
f) Compute the conditional probability distribution of X given Y=3.
1
Expert's answer
2019-11-25T12:11:59-0500
X=0X=1X=2X=3Y=21/121/121/121/121/3Y=31/121/61/1201/3Y=41/121/1201/61/31/41/31/61/41\def\arraystretch{1.5} \begin{array}{c:c:c:c:c:c} & X=0 & X=1 & X=2 & X=3 & \\ \hline Y=2 & 1/12 & 1/12 & 1/12 & 1/12 & \bold{1/3} \\ \hdashline Y=3 & 1/12 & 1/6 & 1/12 & 0 & \bold{1/3} \\ \hdashline Y=4 & 1/12 & 1/12 & 0 & 1/6 & \bold{1/3} \\ \hdashline & \bold{1/4} & \bold{1/3} & \bold{1/6} & \bold{1/4} & \bold{1} \end{array}

a) Find the marginal density of XX and the marginal density of Y.Y. (add them to the above table) 


P(X=0)=112+112+112=14P(X=0)={1 \over 12}+{1 \over 12}+{1 \over 12}={1 \over 4}

P(X=1)=112+16+112=13P(X=1)={1 \over 12}+{1 \over 6}+{1 \over 12}={1 \over 3}

P(X=2)=112+112+0=16P(X=2)={1 \over 12}+{1 \over 12}+0={1 \over 6}

P(X=3)=112+0+16=14P(X=3)={1 \over 12}+0+{1 \over 6}={1 \over 4}

P(Y=2)=112+112+112+112=13P(Y=2)={1 \over 12}+{1 \over 12}+{1 \over 12}+{1 \over 12}={1 \over 3}

P(Y=3)=112+16+112+0=13P(Y=3)={1 \over 12}+{1 \over 6}+{1 \over12}+0={1 \over 3}

P(Y=4)=112+112+0+16=13P(Y=4)={1 \over 12}+{1 \over 12}+0+{1 \over6}={1 \over 3}

b) Are XX and YY independent? 

To check whether XX and YY are independent, we need to check that P(X=xi,Y=yj)=P(X=xi)P(Y=yj)P(X=x_i, Y=y_j)=P(X=x_i)P(Y=y_j)

i=1,2,3,4;j=1,2,3i=1,2,3,4; j=1,2,3


P(X=2,Y=2)=1121613=P(X=2)P(Y=2)P(X=2,Y=2)={1 \over 12}\not={1 \over 6}\cdot{1 \over 3}=P(X=2)P(Y=2)

Thus, we conclude that XX and YY are not independent.


c) Compute the P{Y>1| X>2} 


P(Y>1X>2)=P(X>2,Y>1)P(X>2)P(Y>1|X>2)={P(X>2, Y>1) \over P(X>2)}

P(Y>1X>2)=112+0+1614=1P(Y>1|X>2)={{1 \over 12}+0+{1 \over 6}\over {1 \over 4}}=1

d) Compute the expected value of X. 


E(X)=0(14)+1(13)+2(16)+3(14)=1712E(X)=0({1 \over 4})+1({1 \over 3})+2({1 \over 6})+3({1 \over 4})={17 \over 12}

e) Compute the probability that XX is greater or equal to Y+1.Y+1.


P(X=3,Y=2)=112P(X=3,Y=2)={1 \over12}

f) Compute the conditional probability distribution of XX given Y=3.Y=3.


P(X=xiY=3)=P(X=xi,Y=3)P(Y=3)P(X=x_i|Y=3)={P(X=x_i,Y=3)\over P(Y=3)}

P(X=0Y=3)=P(X=0,Y=3)P(Y=3)=1/121/3=14P(X=0|Y=3)={P(X=0,Y=3)\over P(Y=3)}={1/12\over 1/3}={1\over4}

P(X=1Y=3)=P(X=1,Y=3)P(Y=3)=1/61/3=12P(X=1|Y=3)={P(X=1,Y=3)\over P(Y=3)}={1/6\over 1/3}={1\over2}

P(X=2Y=3)=P(X=2,Y=3)P(Y=3)=1/121/3=14P(X=2|Y=3)={P(X=2,Y=3)\over P(Y=3)}={1/12\over 1/3}={1\over4}

P(X=3Y=3)=P(X=3,Y=3)P(Y=3)=01/3=0P(X=3|Y=3)={P(X=3,Y=3)\over P(Y=3)}={0\over 1/3}=0

x0123fXY=3(x)1/41/21/40\def\arraystretch{1.5} \begin{array}{c:c} x & 0 & 1 & 2 & 3 \\ \hline f_{X|Y=3}(x) & 1/4 & 1/2 & 1/4 & 0 \end{array}


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS