Y=2Y=3Y=4X=01/121/121/121/4X=11/121/61/121/3X=21/121/1201/6X=31/1201/61/41/31/31/31 a) Find the marginal density of X and the marginal density of Y. (add them to the above table)
P(X=0)=121+121+121=41
P(X=1)=121+61+121=31
P(X=2)=121+121+0=61
P(X=3)=121+0+61=41
P(Y=2)=121+121+121+121=31
P(Y=3)=121+61+121+0=31
P(Y=4)=121+121+0+61=31 b) Are X and Y independent?
To check whether X and Y are independent, we need to check that P(X=xi,Y=yj)=P(X=xi)P(Y=yj)
i=1,2,3,4;j=1,2,3
P(X=2,Y=2)=121=61⋅31=P(X=2)P(Y=2) Thus, we conclude that X and Y are not independent.
c) Compute the P{Y>1| X>2}
P(Y>1∣X>2)=P(X>2)P(X>2,Y>1)
P(Y>1∣X>2)=41121+0+61=1 d) Compute the expected value of X.
E(X)=0(41)+1(31)+2(61)+3(41)=1217
e) Compute the probability that X is greater or equal to Y+1.
P(X=3,Y=2)=121 f) Compute the conditional probability distribution of X given Y=3.
P(X=xi∣Y=3)=P(Y=3)P(X=xi,Y=3)
P(X=0∣Y=3)=P(Y=3)P(X=0,Y=3)=1/31/12=41
P(X=1∣Y=3)=P(Y=3)P(X=1,Y=3)=1/31/6=21
P(X=2∣Y=3)=P(Y=3)P(X=2,Y=3)=1/31/12=41
P(X=3∣Y=3)=P(Y=3)P(X=3,Y=3)=1/30=0
xfX∣Y=3(x)01/411/221/430
Comments