Question #98396
Fit a poisson distribution with the following data
X 0 1 2 3 4 5
F 142 156 69 27 5 1
1
Expert's answer
2019-11-12T09:48:16-0500

Suppose we conduct a Poisson experiment, in which the average number of successes within a given region is λ\lambda . Then, the Poisson probability is:


P(x;λ)=eλλxx!P(x;\lambda)={e^{-\lambda}\lambda^x \over x!}

X012345TotalF142156692751400\begin{array}{c:c:c:c:c:c:c:c} X & 0 & 1 & 2 & 3 & 4 & 5 & Total\\ \hline F & 142 & 156 & 69 & 27 & 5 & 1& 400 \end{array}


mean of given distribution=FXF=\text{mean of given distribution}={\sum FX \over \sum F}=

=142(0)+156(1)+69(2)+27(3)+5(4)+1(5)400=1={142(0)+156(1)+69(2)+27(3)+5(4)+1(5) \over 400}=1

This is the parameter λ\lambda of the Poisson distribution :λ=1:\lambda=1

Required Poisson distribution is


Neλλxx!,where N=F=400N\cdot{e^{-\lambda}\lambda^x \over x!}, \text{where } N=\sum F=400

xP(x)Theoretical Frequency0147.151471147.15147273.5874324.532546.13651.231Total=400\begin{array}{c:c:c} x & P(x) & Theoretical\ Frequency \\ \hline 0 & 147.15 & 147 \\ \hline 1 & 147.15 & 147 \\ \hline 2 & 73.58 & 74\\ \hline 3 & 24.53 & 25 \\ \hline 4 & 6.13 & 6 \\ \hline 5 & 1.23 & 1 \\ \hline & & Total=400 \\ \end{array}


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS