Question #97802
It is estimated that 4000 of the 10,000 voting residents of a town are against a new sales tax. If 15 eligible voters are selected at random and asked their opinion, what is the probability that at most 7 favor the new tax?
1
Expert's answer
2019-11-01T10:30:11-0400

4000 out of 10000 voting residents are against a new sales tax. Hence, 100004000=600010000-4000=6000 residents favor the new tax.

Use the hypergeometric distribution with N=10000,n=15,k=6000,x=0 to 7,N=10000, n=15, k=6000,x=0\ \text{to}\ 7,

P(x;N,n,k)=(kx)(Nknx)(Nn)P(x;N, n, k)={\binom{k}{x}\binom{N-k}{n-x} \over \binom{N}{n}}

P(0;10000,15,6000)=(60000)(100006000150)(1000015)=0.00000157P(0;10000, 15, 6000)={\binom{6000}{0}\binom{10000-6000}{15-0} \over \binom{10000}{15}}=0.00000157

P(1;10000,15,6000)=(60001)(100006000151)(1000015)=0.00002386P(1;10000, 15, 6000)={\binom{6000}{1}\binom{10000-6000}{15-1} \over \binom{10000}{15}}=0.00002386

P(2;10000,15,6000)=(60002)(100006000152)(1000015)=0.00025135P(2;10000, 15, 6000)={\binom{6000}{2}\binom{10000-6000}{15-2} \over \binom{10000}{15}}=0.00025135

P(3;10000,15,6000)=(60003)(100006000153)(1000015)=0.00163816P(3;10000, 15, 6000)={\binom{6000}{3}\binom{10000-6000}{15-3} \over \binom{10000}{15}}=0.00163816

P(4;10000,15,6000)=(60004)(100006000154)(1000015)=0.00738837P(4;10000, 15, 6000)={\binom{6000}{4}\binom{10000-6000}{15-4} \over \binom{10000}{15}}=0.00738837

P(5;10000,15,6000)=(60005)(100006000155)(1000015)=0.02442644P(5;10000, 15, 6000)={\binom{6000}{5}\binom{10000-6000}{15-5} \over \binom{10000}{15}}=0.02442644

P(6;10000,15,6000)=(60006)(100006000156)(1000015)=0.06115280P(6;10000, 15, 6000)={\binom{6000}{6}\binom{10000-6000}{15-6} \over \binom{10000}{15}}=0.06115280

P(7;10000,15,6000)=(60007)(100006000157)(1000015)=0.11805571P(7;10000, 15, 6000)={\binom{6000}{7}\binom{10000-6000}{15-7} \over \binom{10000}{15}}=0.11805571

P(X7)0.00000157+0.00002386+P(X\leq7)\approx0.00000157+0.00002386+

+0.00025135+0.00163816+0.00738837++0.00025135+0.00163816+0.00738837+

+0.02442644+0.06115280+0.11805571+0.02442644+0.06115280+0.11805571\approx


0.212938\approx0.212938

The probability that at most 7 favor the new tax is 0.212938.0.212938.



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS