Based on the Normal model N(100,15) describing IQ scores, what percent of people's IQs would you expect to be: a) over 80% b) under 90% c) between 112 and 132
a)
P(X>80)=P(Z>80−10015)=P(Z>−1.33)==1−P(Z<−1.33)=0.9082.P(X>80)=P(Z>\frac{80-100}{15})=P(Z>-1.33)=\\=1-P(Z<-1.33)=0.9082.P(X>80)=P(Z>1580−100)=P(Z>−1.33)==1−P(Z<−1.33)=0.9082.
b)
P(X<90)=P(Z<90−10015)=P(Z<−0.67)=0.2514.P(X<90)=P(Z<\frac{90-100}{15})=P(Z<-0.67)=0.2514.P(X<90)=P(Z<1590−100)=P(Z<−0.67)=0.2514.
c)
P(112<X<132)=P(112−10015<Z<132−10015)==P(0.8<Z<2.13)=P(Z<2.13)−P(Z<0.8)==0.9834−0.7881=0.1953.P(112<X<132)=P(\frac{112-100}{15}<Z<\frac{132-100}{15})=\\= P(0.8<Z<2.13)=P(Z<2.13)-P(Z<0.8)=\\=0.9834-0.7881=0.1953.P(112<X<132)=P(15112−100<Z<15132−100)==P(0.8<Z<2.13)=P(Z<2.13)−P(Z<0.8)==0.9834−0.7881=0.1953.
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments