Question #95846

Based on the Normal model N(100,15) describing IQ scores, what percent of people's IQs would you expect to be: a) over 80% b) under 90% c) between 112 and 132



1
Expert's answer
2019-10-04T10:56:18-0400

a)


P(X>80)=P(Z>8010015)=P(Z>1.33)==1P(Z<1.33)=0.9082.P(X>80)=P(Z>\frac{80-100}{15})=P(Z>-1.33)=\\=1-P(Z<-1.33)=0.9082.


b)


P(X<90)=P(Z<9010015)=P(Z<0.67)=0.2514.P(X<90)=P(Z<\frac{90-100}{15})=P(Z<-0.67)=0.2514.


c)


P(112<X<132)=P(11210015<Z<13210015)==P(0.8<Z<2.13)=P(Z<2.13)P(Z<0.8)==0.98340.7881=0.1953.P(112<X<132)=P(\frac{112-100}{15}<Z<\frac{132-100}{15})=\\= P(0.8<Z<2.13)=P(Z<2.13)-P(Z<0.8)=\\=0.9834-0.7881=0.1953.



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS