2019-09-19T11:55:55-04:00
Predict week 11 using the different methods requested and then use historical analysis to determine the best method.
Smoothing:
Week Attendance
1 350
2 500
3 750
4 705
5 820
6 743
7 880
8 900
9 795
10 900 three week four week three week weighted
Next Week Projection (week 11):
Longest Regression:
1) Use regression analysis to predict week 11 in the above example:
Regression can also be used for predictions within the relevant range:
1
2019-09-23T07:05:11-0400
W e e k A t t e n d a n c e 1 350 2 500 3 750 4 705 5 820 6 743 7 880 8 900 9 795 10 900 \def\arraystretch{1.5}
\begin{array}{c:c}
Week & Attendance \\ \hline
1 & 350 \\
\hdashline
2 & 500 \\
\hdashline
3 & 750 \\
\hdashline
4 & 705 \\
\hdashline
5 & 820 \\
\hdashline
6 & 743 \\
\hdashline
7 & 880 \\
\hdashline
8 & 900 \\
\hdashline
9 & 795\\
\hdashline
10 & 900 \\
\hline
\end{array} W ee k 1 2 3 4 5 6 7 8 9 10 A tt e n d an ce 350 500 750 705 820 743 880 900 795 900
∑ x i = 55 , ∑ y i = 7343 \sum x_i=55, \sum y_i=7343 ∑ x i = 55 , ∑ y i = 7343
∑ x i 2 = 385 , ∑ y i 2 = 5682899 \sum x_i^2=385, \sum y_i^2=5682899 ∑ x i 2 = 385 , ∑ y i 2 = 5682899
∑ x i y i = 44493 \sum x_iy_i=44493 ∑ x i y i = 44493
m e a n : x ˉ = ∑ x i n , y ˉ = ∑ y i n mean:\ \bar{x}={\sum x_i \over n},\ \bar{y}={\sum y_i \over n} m e an : x ˉ = n ∑ x i , y ˉ = n ∑ y i m e a n : x ˉ = 55 10 = 5.5 , y ˉ = 7343 10 = 734.3 mean:\ \bar{x}={55\over 10}=5.5,\ \bar{y}={7343 \over 10}=734.3 m e an : x ˉ = 10 55 = 5.5 , y ˉ = 10 7343 = 734.3 T r e n d l i n e : y = A + B x , B = S x y S x x , A = y ˉ − B x ˉ Trend \ line: y=A+Bx, B={S_{xy} \over S_{xx}}, A=\bar{y}-B\bar{x} T re n d l in e : y = A + B x , B = S xx S x y , A = y ˉ − B x ˉ c o r r e l a t i o n c o e f f i c i e n t : r = S x y S x x S y y correlation\ coefficient: r={S_{xy}\over \sqrt{S_{xx}}\sqrt{S_{yy}}} corre l a t i o n coe ff i c i e n t : r = S xx S yy S x y
S x x = ∑ ( x i − x ˉ ) 2 = ∑ x i 2 − n ⋅ x ˉ 2 S_{xx}=\sum(x_i-\bar{x})^2=\sum x_i^2-n\cdot\bar{x}^2 S xx = ∑ ( x i − x ˉ ) 2 = ∑ x i 2 − n ⋅ x ˉ 2
S x x = 385 − 10 ⋅ 5. 5 2 = 82.5 S_{xx}=385-10\cdot5.5^2=82.5 S xx = 385 − 10 ⋅ 5. 5 2 = 82.5
S y y = ∑ ( y i − y ˉ ) 2 = ∑ y i 2 − n ⋅ y ˉ 2 S_{yy}=\sum(y_i-\bar{y})^2=\sum y_i^2-n\cdot\bar{y}^2 S yy = ∑ ( y i − y ˉ ) 2 = ∑ y i 2 − n ⋅ y ˉ 2
S y y = 5682899 − 10 ⋅ 734. 3 2 = 290934.1 S_{yy}=5682899-10\cdot734.3^2=290934.1 S yy = 5682899 − 10 ⋅ 734. 3 2 = 290934.1
S x y = ∑ ( x i − x ˉ ) ( y i − y ˉ ) = ∑ x i y i − n ⋅ x ˉ y ˉ S_{xy}=\sum(x_i-\bar{x})(y_i-\bar{y})=\sum x_iy_i-n\cdot\bar{x}\bar{y} S x y = ∑ ( x i − x ˉ ) ( y i − y ˉ ) = ∑ x i y i − n ⋅ x ˉ y ˉ
S x y = 44493 − 10 ⋅ 5.5 ⋅ 734.3 = 4106.5 S_{xy}=44493-10\cdot5.5\cdot734.3=4106.5 S x y = 44493 − 10 ⋅ 5.5 ⋅ 734.3 = 4106.5
B = S x y S x x = 4106.5 82.5 ≈ 49.77575758 B={S_{xy} \over S_{xx}}={4106.5\over 82.5}\approx49.77575758 B = S xx S x y = 82.5 4106.5 ≈ 49.77575758
A = y ˉ − B x ˉ = 734.3 − 49.77575758 ⋅ 5.5 = 460.5333333 A=\bar{y}-B\bar{x}=734.3-49.77575758\cdot5.5=460.5333333 A = y ˉ − B x ˉ = 734.3 − 49.77575758 ⋅ 5.5 = 460.5333333
r = S x y S x x S y y = 4106.5 82.5 290934.1 ≈ 0.8382 r={S_{xy}\over \sqrt{S_{xx}}\sqrt{S_{yy}}}={4106.5\over \sqrt{82.5}\sqrt{290934.1}}\approx0.8382 r = S xx S yy S x y = 82.5 290934.1 4106.5 ≈ 0.8382
y = 460.5333333 + 49.77575758 x y=460.5333333+49.77575758x y = 460.5333333 + 49.77575758 x
y ( 11 ) = 460.5333333 + 49.77575758 ( 11 ) ≈ 1008 y(11)=460.5333333+49.77575758(11)\approx1008 y ( 11 ) = 460.5333333 + 49.77575758 ( 11 ) ≈ 1008
Need a fast expert's response?
Submit order
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS !
Comments