Question #94859
Predict week 11 using the different methods requested and then use historical analysis to determine the best method.

Smoothing:
Week Attendance

1 350
2 500
3 750
4 705
5 820
6 743
7 880
8 900
9 795
10 900 three week four week three week weighted

Next Week Projection (week 11):

Longest Regression:

1) Use regression analysis to predict week 11 in the above example:

Regression can also be used for predictions within the relevant range:
1
Expert's answer
2019-09-23T07:05:11-0400
WeekAttendance13502500375047055820674378808900979510900\def\arraystretch{1.5} \begin{array}{c:c} Week & Attendance \\ \hline 1 & 350 \\ \hdashline 2 & 500 \\ \hdashline 3 & 750 \\ \hdashline 4 & 705 \\ \hdashline 5 & 820 \\ \hdashline 6 & 743 \\ \hdashline 7 & 880 \\ \hdashline 8 & 900 \\ \hdashline 9 & 795\\ \hdashline 10 & 900 \\ \hline \end{array}

xi=55,yi=7343\sum x_i=55, \sum y_i=7343


xi2=385,yi2=5682899\sum x_i^2=385, \sum y_i^2=5682899

xiyi=44493\sum x_iy_i=44493



mean: xˉ=xin, yˉ=yinmean:\ \bar{x}={\sum x_i \over n},\ \bar{y}={\sum y_i \over n}mean: xˉ=5510=5.5, yˉ=734310=734.3mean:\ \bar{x}={55\over 10}=5.5,\ \bar{y}={7343 \over 10}=734.3Trend line:y=A+Bx,B=SxySxx,A=yˉBxˉTrend \ line: y=A+Bx, B={S_{xy} \over S_{xx}}, A=\bar{y}-B\bar{x}correlation coefficient:r=SxySxxSyycorrelation\ coefficient: r={S_{xy}\over \sqrt{S_{xx}}\sqrt{S_{yy}}}

Sxx=(xixˉ)2=xi2nxˉ2S_{xx}=\sum(x_i-\bar{x})^2=\sum x_i^2-n\cdot\bar{x}^2

Sxx=385105.52=82.5S_{xx}=385-10\cdot5.5^2=82.5

Syy=(yiyˉ)2=yi2nyˉ2S_{yy}=\sum(y_i-\bar{y})^2=\sum y_i^2-n\cdot\bar{y}^2

Syy=568289910734.32=290934.1S_{yy}=5682899-10\cdot734.3^2=290934.1


Sxy=(xixˉ)(yiyˉ)=xiyinxˉyˉS_{xy}=\sum(x_i-\bar{x})(y_i-\bar{y})=\sum x_iy_i-n\cdot\bar{x}\bar{y}

Sxy=44493105.5734.3=4106.5S_{xy}=44493-10\cdot5.5\cdot734.3=4106.5


B=SxySxx=4106.582.549.77575758B={S_{xy} \over S_{xx}}={4106.5\over 82.5}\approx49.77575758

A=yˉBxˉ=734.349.775757585.5=460.5333333A=\bar{y}-B\bar{x}=734.3-49.77575758\cdot5.5=460.5333333


r=SxySxxSyy=4106.582.5290934.10.8382r={S_{xy}\over \sqrt{S_{xx}}\sqrt{S_{yy}}}={4106.5\over \sqrt{82.5}\sqrt{290934.1}}\approx0.8382

y=460.5333333+49.77575758xy=460.5333333+49.77575758x

y(11)=460.5333333+49.77575758(11)1008y(11)=460.5333333+49.77575758(11)\approx1008


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS