Sum of probabilities ∑i=1∞f(xi)=1
Therefor ∑i=1∞qxi−1⋅p=
=p∑i=1∞qi−1=p∑i=0∞qi=1−qp=1 and p=1−q
Moment generating function
Mx(t)=i=1∑∞etxi⋅f(xi)=
i=1∑∞et⋅iqi−1⋅p=p/q⋅i=1∑∞et⋅iqi=p/q⋅i=1∑∞(etq)i
Sum of geometric series ∑i=1∞(etq)i=etq⋅1−etq1
Mx(t)=p/q1−etqetq=1−qetpet
Expectations
E(x)=Mx′(0)=(1−qetpet)t=0′
E(x2)=Mx′′(0)=(1−qetpet)t=0′′
(1−qetpet)′=(1−qet)2pet(1−qet)−pet(−qet)=(1−qet)2pet
(1−qetpet)′′=((1−qet)2pet)′=(1−qet)4pet(1−qet)2−pet⋅2(1−qet)(−qet)=pet(1−qet)31−qet+2qet=pet(1−qet)31+qet
E(x)=((1−qet)2pet)t=0=(1−q)2p=p/p2=1/p
E(x2)=(pet(1−qet)31+qet)t=0=p(1−q)31+q=p21+q
Variance of x
Var(x)=E(x2)−(E(x))2=p21+q−p21=q/p2=p21−p
Answer: E(x)=1/p, Var(x)=p21−p.
Comments