Question #93999

Let RV x have the pro dist f(x)=q^x-1.pi x=1, 2, 3... Find the mgf of x and hence its mean and variance?


1
Expert's answer
2019-09-10T09:28:51-0400

Sum of probabilities i=1f(xi)=1\sum_{i=1}^\infty f(x_i)=1

Therefor i=1qxi1p=\sum_{i=1}^\infty q^{x_i-1}\cdot p=

=pi=1qi1=pi=0qi=p1q=1=p\sum_{i=1}^\infty q^{i-1}=\\ p\sum_{i=0}^\infty q^i=\frac{p}{1-q}=1 and p=1qp=1-q

Moment generating function

Mx(t)=i=1etxif(xi)=M_x(t)=\displaystyle\sum_{i=1}^\infty e^{tx_i}\cdot f(x_i)=

i=1etiqi1p=p/qi=1etiqi=p/qi=1(etq)i\displaystyle\sum_{i=1}^\infty e^{t\cdot i}q^{i-1}\cdot p=p/q\cdot\displaystyle\sum_{i=1}^\infty e^{t\cdot i}q^{i}=\\ p/q\cdot\displaystyle\sum_{i=1}^\infty (e^tq)^i

Sum of geometric series i=1(etq)i=etq11etq\sum_{i=1}^\infty (e^tq)^i=e^tq\cdot\frac{1}{1-e^tq}

Mx(t)=p/qetq1etq=pet1qetM_x(t)=p/q\frac{e^tq}{1-e^tq}=\frac{pe^t}{1-qe^t}

Expectations

E(x)=Mx(0)=(pet1qet)t=0E(x)=M_x'(0)=(\frac{pe^t}{1-qe^t})'_{t=0}

E(x2)=Mx(0)=(pet1qet)t=0E(x^2)=M_x''(0)=(\frac{pe^t}{1-qe^t})''_{t=0}

(pet1qet)=pet(1qet)pet(qet)(1qet)2=pet(1qet)2(\frac{pe^t}{1-qe^t})'=\frac{pe^t(1-qe^t)-pe^t(-qe^t)}{(1-qe^t)^2}= \frac{pe^t}{(1-qe^t)^2}

(pet1qet)=(pet(1qet)2)=pet(1qet)2pet2(1qet)(qet)(1qet)4=pet1qet+2qet(1qet)3=pet1+qet(1qet)3(\frac{pe^t}{1-qe^t})''=(\frac{pe^t}{(1-qe^t)^2})'= \frac{pe^t(1-qe^t)^2-pe^t\cdot2(1-qe^t)(-qe^t)}{(1-qe^t)^4}=\\ pe^t\frac{1-qe^t+2qe^t}{(1-qe^t)^3}=pe^t\frac{1+qe^t}{(1-qe^t)^3}

E(x)=(pet(1qet)2)t=0=p(1q)2=p/p2=1/pE(x)=(\frac{pe^t}{(1-qe^t)^2})_{t=0}=\frac{p}{(1-q)^2}=p/p^2=1/p

E(x2)=(pet1+qet(1qet)3)t=0=p1+q(1q)3=1+qp2E(x^2)=(pe^t\frac{1+qe^t}{(1-qe^t)^3})_{t=0}=p\frac{1+q}{(1-q)^3}=\frac{1+q}{p^2}

Variance of x

Var(x)=E(x2)(E(x))2=1+qp21p2=q/p2=1pp2Var(x)=E(x^2)-(E(x))^2=\frac{1+q}{p^2}-\frac{1}{p^2}=q/p^2=\\ \frac{1-p}{p^2}

Answer: E(x)=1/p, Var(x)=1pp2.E(x)=1/p,\ Var(x)=\frac{1-p}{p^2}.


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS