Question #93448
Find z that has an area
(a) 0.9505 to its left
(b) 0.05 to its left
(c) 0.6915 to its right
(d) 0.1587 to its right
1
Expert's answer
2019-08-29T07:34:35-0400

https://www.sjsu.edu/faculty/gerstman/EpiInfo/z-table.htmIt is table of standard normal distribution (more precisely, in this table Z(z)=12πzex22dxZ(z)=\frac{1}{\sqrt{2\pi}}\int\limits_{-\infty}^z e^{-\frac{x^2}{2}}dx )So having this table we can write:a)Z(z)=0.9505Z(z)=0.9505 if z=1.65z=1.65 b)Since graph of standard normal distribution is symmetric with respect to line x=0x=0 , for every u0u\ge 0 we have 12πu0ex22dx=12π0uex22dx\frac{1}{\sqrt{2\pi}}\int\limits_{-u}^0 e^{-\frac{x^2}{2}}dx=\frac{1}{\sqrt{2\pi}}\int\limits_0^u e^{-\frac{x^2}{2}}dx. (1)Let zz such number that Z(z)=0,05Z(z)=0,05 . So 0.5=12π0ex22dx=12πzex22dx+12πz0ex22dx=0.5=\frac{1}{\sqrt{2\pi}}\int\limits_{-\infty}^0 e^{-\frac{x^2}{2}}dx=\frac{1}{\sqrt{2\pi}}\int\limits_{-\infty}^z e^{-\frac{x^2}{2}}dx+\frac{1}{\sqrt{2\pi}}\int\limits_z^0 e^{-\frac{x^2}{2}}dx= =0.05+12πz0ex22dx=0.05+\frac{1}{\sqrt{2\pi}}\int\limits_z^0 e^{-\frac{x^2}{2}}dx . That is 12πz0ex22dx=0.45=12π0zex22dx\frac{1}{\sqrt{2\pi}}\int\limits_z^0 e^{-\frac{x^2}{2}}dx=0.45=\frac{1}{\sqrt{2\pi}}\int\limits_0^{-z} e^{-\frac{x^2}{2}}dx by property (1). We have Z(z)=12πzex22dx=12π0ex22dx+12π0zex22dx=0.95Z(-z)=\frac{1}{\sqrt{2\pi}}\int\limits_{-\infty}^{-z} e^{-\frac{x^2}{2}}dx=\frac{1}{\sqrt{2\pi}}\int\limits_{-\infty}^0 e^{-\frac{x^2}{2}}dx+\frac{1}{\sqrt{2\pi}}\int\limits_0^{-z} e^{-\frac{x^2}{2}}dx=0.95 . From table we can see that z1.64-z\approx 1.64 , so z1.64z\approx -1.64 c)We need zz such 12πz+ex22dx=0.6915\frac{1}{\sqrt{2\pi}}\int\limits_z^{+\infty} e^{-\frac{x^2}{2}}dx=0.6915 . Since 1=12π+ex22dx=12πzex22dx+12πz+ex22dx=1=\frac{1}{\sqrt{2\pi}}\int\limits_{-\infty}^{+\infty} e^{-\frac{x^2}{2}}dx=\frac{1}{\sqrt{2\pi}}\int\limits_{-\infty}^z e^{-\frac{x^2}{2}}dx+\frac{1}{\sqrt{2\pi}}\int\limits_z^{+\infty} e^{-\frac{x^2}{2}}dx= =Z(z)+0.6915=Z(z)+0.6915 , so Z(z)=10.6915=0.3085Z(z)=1-0.6915=0.3085 Applying the same argument as in b). Since 0.3085=0.50.19150.3085=0.5-0.1915 , we have Z(z)=0.5+0.1915=0.6915Z(-z)=0.5+0.1915=0.6915 . So from the table we see that z=0.50-z=0.50 and so z=0.50z=-0.50 d)Applying the same argument as in c), we have Z(z)=10.1587=0.8413Z(z)=1-0.1587=0.8413 . From the table we see that z=1.00z=1.00

Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS