Define mean score m = 70, standard deviation σ=6, score obtained by a student x.
Probability P(a<x<b)=P(σa−m<z<σb−m), where z has standard normal distribution.
P(82<x<∞)=P(682−70<z<∞)=P(2<z<∞)=1−P(z≤2)=1−0.9772=0.0228
P(64<x<72)=P(664−70<z<672−70)=P(−1<z<1/3)=P(z<1/3)−P(z≤−1)=0.6306−0.1587=0.4719
P(−∞<x<50)=P(−∞<z<650−70)=P(−∞<z<−20/6)=0.0004
Answer: P(x > 82) = 0.0228, P(64 < x <72) = 0.4719, P(x < 50) = 0.0004.
Comments