Question #92176
A random sample of 25 with a mean of 80 and a standard deviation of 30 is taken from a population of 1000 that is normally distributed. Find a) the 90% b) the 95% and c) the 99% confidence intervals for the unknown population mean.
1
Expert's answer
2019-07-31T09:19:31-0400

Let  α1 = 1 - 0.90 = 0.1. α2 = 1-0.95=0.05, α3 = 1 - 0.99=0.01 are significance levels, degree of freedom

d = 25 - 1 = 24.

For α1 = 0.1 and d = 24 critical t-value t1 = 1.711.

For α2 = 0.05 and d = 24 critical t-value t2 = 2.064,

For α3 = 0.1 and d = 24 critical t-value t3 = 2.797.

We will find corresponding confidence intervals, using expression


(μtsn,μ+tsn)(\mu-\frac{t\cdot s}{\sqrt{n}}, \mu+\frac{t\cdot s}{\sqrt{n}})

where μ is sample mean, t is a critical value,where\ \mu\ is \ sample\ mean ,\ t\ is\ a\ critical\ value,

n is the size and s is standard deviation of the sample.n\ is\ the\ size\ and\ s\ is\ standard\ deviation\ of\ the\ sample.

a) Confidence interval is


(801.7113025,80+1.7113025)=(80 - \frac{1.711\cdot 30}{\sqrt{25}}, 80 + \frac{1.711\cdot 30}{\sqrt{25}})=

(8010.266, 80+10.266)=(80-10.266,\ 80+10.266)=

(69.734, 90.266)(69.734,\ 90.266)

b) Confidence interval is


(802.0643025,80+2.0643025)=(80 - \frac{2.064\cdot 30}{\sqrt{25}}, 80 + \frac{2.064\cdot 30}{\sqrt{25}})=

(8012.384, 80+12.384)=(80-12.384,\ 80+12.384)=

(67.616, 92.384)(67.616,\ 92.384)

c) Confidence interval is


(802.7973025,80+2.7973025)=(80 - \frac{2.797\cdot 30}{\sqrt{25}}, 80 + \frac{2.797\cdot 30}{\sqrt{25}})=

(8016.782, 80+16.782)=(80-16.782,\ 80+16.782)=

(63.218, 96.782)(63.218,\ 96.782)

Answer: a) (69.734, 90.266), b) (67.616, 92.384), c) (63.218, 96.782)


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS