"\\def\\arraystretch{0.5}\n \\begin{array}{c:c:c:c:c}\n \\begin{matrix}\n Monthly \\\\\n Expenses (S \\ \\$)\n\\end{matrix} & \\begin{matrix}\n Frequency \\\\\n (f)\n\\end{matrix} &\\begin{matrix}\n Midpoint \\\\\n (x)\n\\end{matrix} & \\begin{matrix}\n \\ \\ \\ \\ f\\cdot x \\ \\ \\ \\ \\\\\n \n\\end{matrix} \\\\ \\hline\n \n \n \\\\\n\n \n\\end{array}"
"\\ \\ \\ \\ \\ \\ \\ \\ \\ 0\\ - 150 \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ 5 \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ 75 \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ 375"
"\\ \\ \\ \\ \\ 15 0\\ - 300 \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ 8 \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ 225 \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \n1800"
"\\ \\ \\ \\ \\ 300\\ - 450 \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ 15 \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ 375 \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \n\\ \\ \\ 5625"
"\\ \\ \\ \\ \\ 450\\ - 600 \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ 9 \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ 525 \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \n4725"
"\\ \\ \\ \\ \\ 600\\ - 750 \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ 17 \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ 675 \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \n11475"
"\\ \\ \\ \\ \\ 750\\ - 900 \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ 6 \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ 825 \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \n\\ \\ \\ 4950"
"\\sum f\\cdot x="
"=375+1800+5625+4725+11475+4950=28950"
(i)
"\\overline{x}=\\dfrac{\\sum f\\cdot x}{n}=\\dfrac{28950}{60}=482.5"
(ii)
To find Median Class
From the column of frequency "f" , we find that the "30^{th}" observation lies in the class "450\\ - 600 ."
The median class is "450\\ - 600 ."
Cumulative frequency of the class preceding the median class is "5+8+15=28."
Frequency of the median class is "9."
Class length of median class is "150."
(iii)
To find Mode Class
Here, maximum frequency is 17.
The mode class is "600\\ - 750 ."
Lower boundary point of mode class "=600."
Frequency of the mode class "=17."
Frequency of the preceding class "=9."
Frequency of the succedding class "=6."
Class length of mode class "=150."
(iv)
Sample Variance
"\\sum f_i x_i^2=5(75)^2+8(225)^2+15(375)^2+9(525)^2+""+17(675)^2+6(825)^2=16852500"
"s^2={16852500-\\Big \\lbrack {\\dfrac{(28950)^2}{60}}\\Big \\rbrack\\over \\ 60 -1}\\approx 48883.4746"
(v)
Coefficient of Variation (Sample)
"{s \\over \\overline{x}}\\cdot 100\\%\\approx{\\sqrt {48883.4746} \\over \\ 482.5}\\cdot 100\\%\\approx45.823 \\%"
Comments
Dear Sharon Tan, You are welcome. We are glad to be helpful. If you liked our service, please press a like-button beside the answer field. Thank you!
Thank you very much for your helping
Leave a comment