M o n t h l y E x p e n s e s ( S $ ) F r e q u e n c y ( f ) M i d p o i n t ( x ) f ⋅ x \def\arraystretch{0.5}
\begin{array}{c:c:c:c:c}
\begin{matrix}
Monthly \\
Expenses (S \ \$)
\end{matrix} & \begin{matrix}
Frequency \\
(f)
\end{matrix} &\begin{matrix}
Midpoint \\
(x)
\end{matrix} & \begin{matrix}
\ \ \ \ f\cdot x \ \ \ \ \\
\end{matrix} \\ \hline
\\
\end{array} M o n t h l y E x p e n ses ( S $ ) F re q u e n cy ( f ) M i d p o in t ( x ) f ⋅ x
0 − 150 5 75 375 \ \ \ \ \ \ \ \ \ 0\ - 150 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ 5 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ 75 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ 375 0 − 150 5 75 375
150 − 300 8 225 1800 \ \ \ \ \ 15 0\ - 300 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ 8 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ 225 \ \ \ \ \ \ \ \ \ \ \ \ \ \
1800 150 − 300 8 225 1800
300 − 450 15 375 5625 \ \ \ \ \ 300\ - 450 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ 15 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ 375 \ \ \ \ \ \ \ \ \ \ \
\ \ \ 5625 300 − 450 15 375 5625
450 − 600 9 525 4725 \ \ \ \ \ 450\ - 600 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ 9 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ 525 \ \ \ \ \ \ \ \ \ \ \ \ \ \
4725 450 − 600 9 525 4725
600 − 750 17 675 11475 \ \ \ \ \ 600\ - 750 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ 17 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ 675 \ \ \ \ \ \ \ \ \ \ \ \
11475 600 − 750 17 675 11475
750 − 900 6 825 4950 \ \ \ \ \ 750\ - 900 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ 6 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ 825 \ \ \ \ \ \ \ \ \ \ \
\ \ \ 4950 750 − 900 6 825 4950
∑ f ⋅ x = \sum f\cdot x= ∑ f ⋅ x =
= 375 + 1800 + 5625 + 4725 + 11475 + 4950 = 28950 =375+1800+5625+4725+11475+4950=28950 = 375 + 1800 + 5625 + 4725 + 11475 + 4950 = 28950
(i)
x ‾ = ∑ f ⋅ x n = 28950 60 = 482.5 \overline{x}=\dfrac{\sum f\cdot x}{n}=\dfrac{28950}{60}=482.5 x = n ∑ f ⋅ x = 60 28950 = 482.5
(ii)
To find Median Class
v a l u e o f ( n 2 ) t h o b s e r v a t i o n = value\ of\ ({n \over 2})^{th}\ observation= v a l u e o f ( 2 n ) t h o b ser v a t i o n = = v a l u e o f ( 60 2 ) t h o b s e r v a t i o n = =value\ of\ ({60 \over 2})^{th}\ observation= = v a l u e o f ( 2 60 ) t h o b ser v a t i o n = = v a l u e o f ( 30 ) t h o b s e r v a t i o n =value\ of\ (30)^{th}\ observation = v a l u e o f ( 30 ) t h o b ser v a t i o n From the column of frequency f f f , we find that the 3 0 t h 30^{th} 3 0 t h observation lies in the class 450 − 600. 450\ - 600 . 450 − 600.
The median class is 450 − 600. 450\ - 600 . 450 − 600.
Cumulative frequency of the class preceding the median class is 5 + 8 + 15 = 28. 5+8+15=28. 5 + 8 + 15 = 28.
Frequency of the median class is 9. 9. 9.
Class length of median class is 150. 150. 150.
m e d i a n = 450 + 30 − 28 9 ⋅ 150 ≈ 483.3333 median=450+{30-28 \over 9}\cdot 150\approx 483.3333 m e d ian = 450 + 9 30 − 28 ⋅ 150 ≈ 483.3333
(iii)
To find Mode Class
Here, maximum frequency is 17.
The mode class is 600 − 750. 600\ - 750 . 600 − 750.
Lower boundary point of mode class = 600. =600. = 600.
Frequency of the mode class = 17. =17. = 17.
Frequency of the preceding class = 9. =9. = 9.
Frequency of the succedding class = 6. =6. = 6.
Class length of mode class = 150. =150. = 150.
m o d e = 600 + 17 − 9 2 ⋅ 17 − 9 − 6 ⋅ 150 = 663.1579 mode=600+{17 - 9 \over 2\cdot 17-9-6}\cdot 150=663.1579 m o d e = 600 + 2 ⋅ 17 − 9 − 6 17 − 9 ⋅ 150 = 663.1579
(iv)
Sample Variance
s 2 = ∑ f i x i 2 − [ ( ∑ f i ⋅ x i ) 2 n ] n − 1 s^2={\sum f_i x_i^2-\Big \lbrack {\dfrac{(\sum f_i\cdot x_i)^2}{n}}\Big \rbrack\over \ n -1} s 2 = n − 1 ∑ f i x i 2 − [ n ( ∑ f i ⋅ x i ) 2 ]
∑ f i x i 2 = 5 ( 75 ) 2 + 8 ( 225 ) 2 + 15 ( 375 ) 2 + 9 ( 525 ) 2 + \sum f_i x_i^2=5(75)^2+8(225)^2+15(375)^2+9(525)^2+ ∑ f i x i 2 = 5 ( 75 ) 2 + 8 ( 225 ) 2 + 15 ( 375 ) 2 + 9 ( 525 ) 2 + + 17 ( 675 ) 2 + 6 ( 825 ) 2 = 16852500 +17(675)^2+6(825)^2=16852500 + 17 ( 675 ) 2 + 6 ( 825 ) 2 = 16852500
s 2 = 16852500 − [ ( 28950 ) 2 60 ] 60 − 1 ≈ 48883.4746 s^2={16852500-\Big \lbrack {\dfrac{(28950)^2}{60}}\Big \rbrack\over \ 60 -1}\approx 48883.4746 s 2 = 60 − 1 16852500 − [ 60 ( 28950 ) 2 ] ≈ 48883.4746
(v)
Coefficient of Variation (Sample)
s x ‾ ⋅ 100 % ≈ 48883.4746 482.5 ⋅ 100 % ≈ 45.823 % {s \over \overline{x}}\cdot 100\%\approx{\sqrt {48883.4746} \over \ 482.5}\cdot 100\%\approx45.823 \% x s ⋅ 100% ≈ 482.5 48883.4746 ⋅ 100% ≈ 45.823%
Comments
Dear Sharon Tan, You are welcome. We are glad to be helpful. If you liked our service, please press a like-button beside the answer field. Thank you!
Thank you very much for your helping