Question #90332
XYZ, a retail store, operates in a highly competitive market with many competitors. The manager has been tasked to do some statistical analysis on the monthly expenses over the last five years. Table 1.1 shows the data that was collected.

Monthly Expenses (S$) Frequency

0 and less than 150 5
150 and less than 300 8
300 and less than 450 15
450 and less than 600 9
600 and less than 750 17
750 and less than 900 6

Total 60


(a) For the above grouped data, calculate:
(i) Mean
(ii) Median
(iii) Mode
(iv) Sample variance
(v) Coefficient of Variation
1
Expert's answer
2019-05-29T09:06:00-0400

MonthlyExpenses(S $)Frequency(f)Midpoint(x)    fx    \def\arraystretch{0.5} \begin{array}{c:c:c:c:c} \begin{matrix} Monthly \\ Expenses (S \ \$) \end{matrix} & \begin{matrix} Frequency \\ (f) \end{matrix} &\begin{matrix} Midpoint \\ (x) \end{matrix} & \begin{matrix} \ \ \ \ f\cdot x \ \ \ \ \\ \end{matrix} \\ \hline \\ \end{array}

         0 150                  5                   75                375\ \ \ \ \ \ \ \ \ 0\ - 150 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ 5 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ 75 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ 375

     150 300                  8                 225              1800\ \ \ \ \ 15 0\ - 300 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ 8 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ 225 \ \ \ \ \ \ \ \ \ \ \ \ \ \ 1800

     300 450                15                 375              5625\ \ \ \ \ 300\ - 450 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ 15 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ 375 \ \ \ \ \ \ \ \ \ \ \ \ \ \ 5625

     450 600                  9                 525              4725\ \ \ \ \ 450\ - 600 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ 9 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ 525 \ \ \ \ \ \ \ \ \ \ \ \ \ \ 4725

     600 750                17                 675            11475\ \ \ \ \ 600\ - 750 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ 17 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ 675 \ \ \ \ \ \ \ \ \ \ \ \ 11475

     750 900                  6                 825              4950\ \ \ \ \ 750\ - 900 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ 6 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ 825 \ \ \ \ \ \ \ \ \ \ \ \ \ \ 4950

fx=\sum f\cdot x=

=375+1800+5625+4725+11475+4950=28950=375+1800+5625+4725+11475+4950=28950

(i)

x=fxn=2895060=482.5\overline{x}=\dfrac{\sum f\cdot x}{n}=\dfrac{28950}{60}=482.5


(ii)

To find Median Class 


value of (n2)th observation=value\ of\ ({n \over 2})^{th}\ observation==value of (602)th observation==value\ of\ ({60 \over 2})^{th}\ observation==value of (30)th observation=value\ of\ (30)^{th}\ observation

From the column of frequency ff , we find that the 30th30^{th} observation lies in the class 450 600.450\ - 600 .

The median class is 450 600.450\ - 600 .

Cumulative frequency of the class preceding the median class is 5+8+15=28.5+8+15=28.

Frequency of the median class is 9.9.

Class length of median class is 150.150.


median=450+30289150483.3333median=450+{30-28 \over 9}\cdot 150\approx 483.3333


(iii)

To find Mode Class 

Here, maximum frequency is 17.

The mode class is 600 750.600\ - 750 .

Lower boundary point of mode class =600.=600.

Frequency of the mode class =17.=17.

Frequency of the preceding class =9.=9.

Frequency of the succedding class =6.=6.

Class length of mode class =150.=150.


mode=600+17921796150=663.1579mode=600+{17 - 9 \over 2\cdot 17-9-6}\cdot 150=663.1579


(iv)

Sample Variance 


s2=fixi2[(fixi)2n] n1s^2={\sum f_i x_i^2-\Big \lbrack {\dfrac{(\sum f_i\cdot x_i)^2}{n}}\Big \rbrack\over \ n -1}

fixi2=5(75)2+8(225)2+15(375)2+9(525)2+\sum f_i x_i^2=5(75)^2+8(225)^2+15(375)^2+9(525)^2++17(675)2+6(825)2=16852500+17(675)^2+6(825)^2=16852500

s2=16852500[(28950)260] 60148883.4746s^2={16852500-\Big \lbrack {\dfrac{(28950)^2}{60}}\Big \rbrack\over \ 60 -1}\approx 48883.4746

(v)

Coefficient of Variation (Sample) 

sx100%48883.4746 482.5100%45.823%{s \over \overline{x}}\cdot 100\%\approx{\sqrt {48883.4746} \over \ 482.5}\cdot 100\%\approx45.823 \%


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

Assignment Expert
30.05.19, 11:59

Dear Sharon Tan, You are welcome. We are glad to be helpful. If you liked our service, please press a like-button beside the answer field. Thank you!

Sharon Tan
30.05.19, 06:26

Thank you very much for your helping

LATEST TUTORIALS
APPROVED BY CLIENTS