Question #88347
From frequency distribution table given below, find-
i) mean
ii) median
iii) mode
iv) variance
v) standard deviation
L1 — L2 50–52 53–55 56–58 59–61 62–64
f 5 10 21 8 6
1
Expert's answer
2019-04-25T09:15:26-0400


(i):


Lx=(L2+L1)/2L_x =(L_2+L_1)/2fx=fLxf_x=f \cdot L_xMean=fxf=2850/50=57Mean= \frac {\sum f_x} {\sum f}=2850/50=57

(ii):


F - cumulative frequency\text {F - cumulative frequency}f2=25 class median: 56-58\frac {\sum f} {2} = 25 \rightarrow \text { class median: 56-58}Lm=55.5 - the lower boundary of the class medianL_m=55.5 \text { - the lower boundary of the class median}fm=21 - the frequency of the class medianf_m=21 \text { - the frequency of the class median}Fm=15 - the cumulative frequency before class medianF_m=15 \text { - the cumulative frequency before class median}w=3 - the class widthw=3 \text { - the class width}Median=Lm+f2Fmfmw=55.5+2515213=56.929Median=L_m + \frac {\frac {\sum f} {2} - F_m} {f_m} w = 55.5 + \frac {25-15} {21} 3 = 56.929

(iii):


fmax=21 modal group: 56-58f_{max} = 21 \rightarrow \text { modal group: 56-58}Lmd=55.5 - the lower boundary of the modal groupL_{md}=55.5 \text { - the lower boundary of the modal group}fmd=21 - the frequency of the modal groupf_{md} = 21 \text { - the frequency of the modal group}Mode=Lmd+fmdfmd1(fmdfmd1)+(fmdfmd+1)w=Mode = L_{md} + \frac {f_{md} - f_{md-1}} {(f_{md} - f_{md-1})+(f_{md} - f_{md+1})} w==55.5+21102110+2183=56.875=55.5+\frac {21-10} {21-10+21-8} 3=56.875

(iv):


Variance=σ2=fx2f(fxf)2=216271850572=40005.36Variance=\sigma ^2 = \frac {\sum f_x ^2} {\sum f} - (\frac {\sum f_x } {\sum f})^2 = \frac {2162718} {50} - 57^2 = 40005.36

(v):


Standard deviation=σ2=200.013\text {Standard deviation} = \sqrt{\sigma^2}=200.013



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS