Let B denote the event that the customer buys a bread, C denote the event that the customer buys a cupcake, and D denote the event that the customer buys a donut.
Then
Venn diagram
"P(B \\cap \\overline{C} \\cap \\overline{D})=P(B)-P(B \\cap C \\cap \\overline{D})-P(B \\cap D \\cap \\overline{C})-P(B \\cap C \\cap D)=""=0.25-0.06-0.05-0.05=0.09"
"P(C \\cap \\overline{B} \\cap \\overline{D})=P(C)-P(B \\cap C \\cap \\overline{D})-P(C \\cap D \\cap \\overline{B})-P(B \\cap C \\cap D)=""=0.25-0.06-0.05-0.05=0.09"
"P(D \\cap \\overline{B} \\cap \\overline{C})=P(B \\cup D)-P(B \\cap \\overline{C} \\cap \\overline{D})-P(B \\cap D \\cap \\overline{C})-P(B \\cap C \\cap D)-""-P(C \\cap D \\cap \\overline{B})-P(B \\cap C \\cap \\overline{D})=""=0.58-0.30-0.03-0.05-0.05-0.06=0.09"
The probability that the selected person buys a donut is
The probability that the selected person buys bread if we know they don't buy a cupcake is
"P(B| \\overline{C})=P(B \\cap \\overline{C})\/P(\\overline{C})=""=(P(B)-P(B \\cap C))\/(1-P(C))=(0.44-0.11)\/(1-0.25)=0.44"
The probability that the selected person buys bread if we know they buy a cupcake and a donut is
"P(B|(C \\cap D))=P(B \\cap C \\cap D)\/P(C \\cap D)=0.05\/0.10=0.5"In a random sample of 5 customers, what is the probability that 2 or fewer of them buy bread?
B has a binomial distribution
"P(B\\le 2)=5!\/(0!(5-0)!)*(0.44)^0*(1-0.44)^{5-0}+5!\/(1!(5-1)!)*(0.44)^1*(1-0.44)^{5-1}+""+5!\/(2!(5-2)!)*(0.44)^2*(1-0.44)^{5-2}=0.6114"
Comments
Leave a comment