i) "\\sigma (cX) =|c| \\sigma (X), \\sigma (X+c) =\\sigma (X)"
"\\operatorname{cov}(aX,bY) =ab \\operatorname{cov}(X,Y), \\operatorname{cov}(X+a,Y+b) =\\operatorname{cov}(X,Y)"
"\\operatorname{corr}(X,Y) =\\dfrac{ \\operatorname{cov}(X,Y)}{\\sigma_X \\sigma_Y} \\Rightarrow \\operatorname{corr}(5X+2,-2Y+3)=\\dfrac{-10}{10}\\operatorname{corr}(X,Y)=-0.75"
True
ii) "P(A\\cup B)=P(A)+P(B)-P(A\\cap B), P(A\\cap B)=P(A)P(B)"
"P(B)=\\dfrac{P(A\\cup B) - P(A)}{1-P(A)}=\\dfrac{0.2}{0.5}=0.4"
iii) False.
If "X_k \\sim N(0,\\sigma^2 ), k=1,\\dots, n," then
"\\dfrac{1}{\\sigma^2}\\sum\\limits_{k=1}^n X_k^2 \\sim \\chi^2(n)"
https://en.wikipedia.org/wiki/Chi-squared_distribution
iv) False
https://en.wikipedia.org/wiki/Maximum_likelihood_estimation#Higher-order_properties
see bias of order "1\/n"
v) False
https://www.emathzone.com/tutorials/basic-statistics/mean-deviation-and-its-coefficient.html
see median case
Comments
Leave a comment