Solution:
Let count all possible outcomes and ways:.
Number of possible outcomes: N = 2 n ; N=2^{n}; N = 2 n ; here n n n - number of orders.
Number of ways: n C m = n ! ( n − m ) ! m ! ; ^{n}C_{m}=\frac{n!}{(n-m)!m!}; n C m = ( n − m )! m ! n ! ; here m m m - number of received orders. So,
6 C 0 = 6 ! ( 6 − 0 ) ! 0 ! = 1 ; ^{6}C_{0}=\frac{6!}{(6-0)!0!}=1; 6 C 0 = ( 6 − 0 )! 0 ! 6 ! = 1 ;
6 C 1 = 6 ! ( 6 − 1 ) ! 1 ! = 6 ; ^{6}C_{1}=\frac{6!}{(6-1)!1!}=6; 6 C 1 = ( 6 − 1 )! 1 ! 6 ! = 6 ;
6 C 2 = 6 ! ( 6 − 2 ) ! 2 ! = 15 ; ^{6}C_{2}=\frac{6!}{(6-2)!2!}=15; 6 C 2 = ( 6 − 2 )! 2 ! 6 ! = 15 ;
6 C 3 = 6 ! ( 6 − 3 ) ! 3 ! = 20 ; ^{6}C_{3}=\frac{6!}{(6-3)!3!}=20; 6 C 3 = ( 6 − 3 )! 3 ! 6 ! = 20 ;
6 C 4 = 6 ! ( 6 − 4 ) ! 4 ! = 15 ; ^{6}C_{4}=\frac{6!}{(6-4)!4!}=15; 6 C 4 = ( 6 − 4 )! 4 ! 6 ! = 15 ;
6 C 5 = 6 ! ( 6 − 5 ) ! 5 ! = 6 ; ^{6}C_{5}=\frac{6!}{(6-5)!5!}=6; 6 C 5 = ( 6 − 5 )! 5 ! 6 ! = 6 ;
6 C 6 = 6 ! ( 6 − 6 ) ! 6 ! = 1 ; ^{6}C_{6}=\frac{6!}{(6-6)!6!}=1; 6 C 6 = ( 6 − 6 )! 6 ! 6 ! = 1 ;
N = 2 6 = 64 ; N=2^{6}=64; N = 2 6 = 64 ;
a)
1) P ( 1 ) = 6 64 = 0.09375 ; P(1)=\frac{6}{64}=0.09375; P ( 1 ) = 64 6 = 0.09375 ;
2) No more than three, so, we need to add terms with m from 0 to 3:
P ( m ≤ 3 ) = P ( 0 ) + P ( 1 ) + P ( 2 ) + P ( 3 ) = 1 + 6 + 15 + 20 64 = 0.65625 ; P(m\le3)=P(0)+P(1)+P(2)+P(3)=\frac{1+6+15+20}{64}=0.65625; P ( m ≤ 3 ) = P ( 0 ) + P ( 1 ) + P ( 2 ) + P ( 3 ) = 64 1 + 6 + 15 + 20 = 0.65625 ;
3) At least three order received, so, we need to add terms with m from 3 to 6;
P ( m ≥ 3 ) = P ( 3 ) + P ( 4 ) + P ( 5 ) + P ( 6 ) = 20 + 15 + 6 + 1 64 = 0.65625 ; P(m\ge3)=P(3)+P(4)+P(5)+P(6)=\frac{20+15+6+1}{64}=0.65625; P ( m ≥ 3 ) = P ( 3 ) + P ( 4 ) + P ( 5 ) + P ( 6 ) = 64 20 + 15 + 6 + 1 = 0.65625 ;
b) If a half day, it means n = 6 2 = 3 ; n=\frac{6}{2}=3; n = 2 6 = 3 ;
N = 2 3 = 8 − N=2^{3}=8- N = 2 3 = 8 − numbers of possible outcomes;
Number of ways:
3 C 0 = 3 ! ( 3 − 0 ) ! 0 ! = 1 ; ^{3}C_{0}=\frac{3!}{(3-0)!0!}=1; 3 C 0 = ( 3 − 0 )! 0 ! 3 ! = 1 ;
3 C 1 = 3 ! ( 3 − 1 ) ! 1 ! = 3 ; ^{3}C_{1}=\frac{3!}{(3-1)!1!}=3; 3 C 1 = ( 3 − 1 )! 1 ! 3 ! = 3 ;
3 C 2 = 3 ! ( 3 − 2 ) ! 2 ! = 3 ; ^{3}C_{2}=\frac{3!}{(3-2)!2!}=3; 3 C 2 = ( 3 − 2 )! 2 ! 3 ! = 3 ;
3 C 3 = 3 ! ( 3 − 3 ) ! 3 ! = 1 ; ^{3}C_{3}=\frac{3!}{(3-3)!3!}=1; 3 C 3 = ( 3 − 3 )! 3 ! 3 ! = 1 ;
P ( 1 ) = 3 8 = 0.375 ; P(1)=\frac{3}{8}=0.375; P ( 1 ) = 8 3 = 0.375 ;
c) In the binomial distribution:
μ = n P ( 1 ) = 64 × 0.09375 = 6 \mu=nP(1)=64\times0.09375=6 μ = n P ( 1 ) = 64 × 0.09375 = 6 is the mean of the distribution;
σ = n P ( 1 ) ( 1 − P ( 1 ) ) = 2.33 \sigma=\sqrt{nP(1)(1-P(1))}=2.33 σ = n P ( 1 ) ( 1 − P ( 1 )) = 2.33 is the standard deviation of the distribution.
Answer:
a)
1) P ( 1 ) = 0.09375 ; P(1)=0.09375; P ( 1 ) = 0.09375 ;
2) P ( m ≤ 3 ) = 0.65625 ; P(m\le3)=0.65625; P ( m ≤ 3 ) = 0.65625 ;
3) P ( m ≥ 3 ) = 0.65625 ; P(m\ge3)=0.65625; P ( m ≥ 3 ) = 0.65625 ;
b) P ( 1 ) = 0.375 ; P(1)=0.375; P ( 1 ) = 0.375 ;
c) μ = 6 ; \mu=6; μ = 6 ; σ = 2.33. \sigma=2.33. σ = 2.33.
Comments