Question #350344

Random samples of size 3 are taken from a population of the numbers 3, 4,5,6, 7,8,and 9.


1. How many samples are possible? List them and compute


the mean of each sample. 2. Construct the sampling distribution of the sample means.


3. Construct the histogram of the sampling distribution of


the sample means. Describe the shape of the histogram.


1
Expert's answer
2022-06-14T00:16:39-0400

We have population values 3, 4, 5, 6, 7, 8, 9, population size N=7 and sample size n=3.

Mean of population (μ)(\mu) = 3+4+5+6+7+8+97=6\dfrac{3+4+5+6+7+8+9}{7}=6

Variance of population 


σ2=Σ(xixˉ)2n\sigma^2=\dfrac{\Sigma(x_i-\bar{x})^2}{n}=17(9+4+1+0+1+4+6)=4=\dfrac{1}{7}(9+4+1+0+1+4+6)=4σ=σ2=4=2\sigma=\sqrt{\sigma^2}=\sqrt{4}=2

1. Select a random sample of size 4 without replacement. We have a sample distribution of sample mean.

The number of possible samples which can be drawn without replacement is NCn=7C3=35.^{N}C_n=^{7}C_3=35.

noSampleSamplemean (xˉ)13,4,512/323,4,613/333,4,714/343,4,815/353,4,916/363,5,614/373,5,715/383,5,816/393,5,917/3103,6,716/3113,6,817/3123,6,918/3133,7,818/3143,7,919/3153,8,920/3164,5,615/3174,5,716/3184,5,817/3194,5,918/3204,6,717/3214,6,818/3224,6,919/3234,7,819/3244,7,920/3254,8,921/3265,6,718/3275,6,819/3285,6,920/3295,7,820/3305,7,921/3315,8,922/3326,7,821/3336,7,922/3346,8,923/3357,8,924/3\def\arraystretch{1.5} \begin{array}{c:c:c:c:c} no & Sample & Sample \\ & & mean\ (\bar{x}) \\ \hline 1 & 3,4,5 & 12/3 \\ \hdashline 2 & 3,4,6 & 13/3 \\ \hdashline 3 & 3,4,7 & 14/3\\ \hdashline 4 & 3,4,8 & 15/3 \\ \hdashline 5 & 3,4,9 & 16/3 \\ \hdashline 6 & 3,5,6 & 14/3 \\ \hdashline 7 & 3,5,7 & 15/3\\ \hdashline 8 & 3,5,8 & 16/3 \\ \hdashline 9 & 3,5,9 & 17/3\\ \hdashline 10 & 3, 6,7 & 16/3 \\ \hdashline 11 & 3,6,8 & 17/3 \\ \hdashline 12 & 3,6,9 & 18/3 \\ \hdashline 13 & 3,7,8 & 18/3 \\ \hdashline 14 & 3,7,9 & 19/3 \\ \hdashline 15 & 3,8,9 & 20/3 \\ \hdashline 16 & 4,5,6 & 15/3 \\ \hdashline 17 & 4,5,7 & 16/3 \\ \hdashline 18 & 4,5,8 & 17/3 \\ \hdashline 19 & 4,5,9 & 18/3 \\ \hdashline 20 & 4,6,7 & 17/3 \\ \hdashline 21 & 4,6,8 & 18/3 \\ \hdashline 22 & 4,6,9 & 19/3 \\ \hdashline 23 & 4,7,8 & 19/3 \\ \hdashline 24 & 4,7,9 & 20/3 \\ \hdashline 25 & 4,8,9 & 21/3 \\ \hdashline 26 & 5,6,7 & 18/3 \\ \hdashline 27 & 5,6,8 & 19/3 \\ \hdashline 28 & 5,6,9 & 20/3 \\ \hdashline 29 & 5,7,8 & 20/3 \\ \hdashline 30 & 5,7,9 & 21/3 \\ \hdashline 31 & 5,8,9 & 22/3 \\ \hdashline 32 & 6,7,8 & 21/3 \\ \hdashline 33 & 6,7,9 & 22/3 \\ \hdashline 34 & 6,8,9 & 23/3 \\ \hdashline 35 & 7,8,9 & 24/3 \\ \hdashline \end{array}



2.


Xˉf(Xˉ)Xˉf(Xˉ)Xˉ2f(Xˉ)12/31/3512/105144/31513/31/3513/105169/31514/32/3528/105392/31515/33/3545/105675/31516/34/3564/1051024/31517/34/3568/1051156/31518/34/3590/1051620/31519/34/3576/1051444/31520/34/3580/1051600/31521/33/3563/1051323/31522/32/3544/105968/31523/31/3523/105529/31524/31/3524/105576/315\def\arraystretch{1.5} \begin{array}{c:c:c:c:c} \bar{X} & f(\bar{X}) &\bar{X} f(\bar{X}) & \bar{X}^2f(\bar{X}) \\ \hline 12/3 & 1/35 & 12/105 & 144/315 \\ \hdashline 13/3 & 1/35 & 13/105 & 169/315 \\ \hdashline 14/3& 2/35 & 28/105 & 392/315 \\ \hdashline 15/3 & 3/35 & 45/105 & 675/315 \\ \hdashline 16/3 & 4/35 & 64/105 & 1024/315\\ \hdashline 17/3 & 4/35 & 68/105 & 1156/315 \\ \hdashline 18/3 & 4/35 & 90/105 & 1620/315 \\ \hdashline 19/3 & 4/35 & 76/105 & 1444/315 \\ \hdashline 20/3 & 4/35 & 80/105 & 1600/315 \\ \hdashline 21/3 & 3/35 & 63/105 & 1323/315 \\ \hdashline 22/3 & 2/35 & 44/105 & 968/315 \\ \hdashline 23/3 & 1/35 & 23/105 & 529/315 \\ \hdashline 24/3 & 1/35 & 24/105 & 576/315 \\ \hdashline \end{array}



Mean of sampling distribution 


μXˉ=E(Xˉ)=Xˉif(Xˉi)=630105=6=μ\mu_{\bar{X}}=E(\bar{X})=\sum\bar{X}_if(\bar{X}_i)=\dfrac{630}{105}=6=\mu



The variance of sampling distribution 


Var(Xˉ)=σXˉ2=Xˉi2f(Xˉi)[Xˉif(Xˉi)]2Var(\bar{X})=\sigma^2_{\bar{X}}=\sum\bar{X}_i^2f(\bar{X}_i)-\big[\sum\bar{X}_if(\bar{X}_i)\big]^2=11620315(6)2=89=σ2n(NnN1)=\dfrac{11620}{315}-(6)^2=\dfrac{8}{9}= \dfrac{\sigma^2}{n}(\dfrac{N-n}{N-1})




σXˉ=89=2230.9428\sigma_{\bar{X}}=\sqrt{\dfrac{8}{9}}=\dfrac{2\sqrt{2}}{3}\approx0.9428


3.



Symmetric distribution.




Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS