We have population values 3, 4, 5, 6, 7, 8, 9, population size N=7 and sample size n=3.
Mean of population (μ) = 73+4+5+6+7+8+9=6
Variance of population
σ2=nΣ(xi−xˉ)2=71(9+4+1+0+1+4+6)=4σ=σ2=4=21. Select a random sample of size 4 without replacement. We have a sample distribution of sample mean.
The number of possible samples which can be drawn without replacement is NCn=7C3=35.
no1234567891011121314151617181920212223242526272829303132333435Sample3,4,53,4,63,4,73,4,83,4,93,5,63,5,73,5,83,5,93,6,73,6,83,6,93,7,83,7,93,8,94,5,64,5,74,5,84,5,94,6,74,6,84,6,94,7,84,7,94,8,95,6,75,6,85,6,95,7,85,7,95,8,96,7,86,7,96,8,97,8,9Samplemean (xˉ)12/313/314/315/316/314/315/316/317/316/317/318/318/319/320/315/316/317/318/317/318/319/319/320/321/318/319/320/320/321/322/321/322/323/324/3
2.
Xˉ12/313/314/315/316/317/318/319/320/321/322/323/324/3f(Xˉ)1/351/352/353/354/354/354/354/354/353/352/351/351/35Xˉf(Xˉ)12/10513/10528/10545/10564/10568/10590/10576/10580/10563/10544/10523/10524/105Xˉ2f(Xˉ)144/315169/315392/315675/3151024/3151156/3151620/3151444/3151600/3151323/315968/315529/315576/315
Mean of sampling distribution
μXˉ=E(Xˉ)=∑Xˉif(Xˉi)=105630=6=μ
The variance of sampling distribution
Var(Xˉ)=σXˉ2=∑Xˉi2f(Xˉi)−[∑Xˉif(Xˉi)]2=31511620−(6)2=98=nσ2(N−1N−n)
σXˉ=98=322≈0.9428
3.
Symmetric distribution.
Comments