Answer to Question #350344 in Statistics and Probability for cessa

Question #350344

Random samples of size 3 are taken from a population of the numbers 3, 4,5,6, 7,8,and 9.


1. How many samples are possible? List them and compute


the mean of each sample. 2. Construct the sampling distribution of the sample means.


3. Construct the histogram of the sampling distribution of


the sample means. Describe the shape of the histogram.


1
Expert's answer
2022-06-14T00:16:39-0400

We have population values 3, 4, 5, 6, 7, 8, 9, population size N=7 and sample size n=3.

Mean of population "(\\mu)" = "\\dfrac{3+4+5+6+7+8+9}{7}=6"

Variance of population 


"\\sigma^2=\\dfrac{\\Sigma(x_i-\\bar{x})^2}{n}""=\\dfrac{1}{7}(9+4+1+0+1+4+6)=4""\\sigma=\\sqrt{\\sigma^2}=\\sqrt{4}=2"

1. Select a random sample of size 4 without replacement. We have a sample distribution of sample mean.

The number of possible samples which can be drawn without replacement is "^{N}C_n=^{7}C_3=35."

"\\def\\arraystretch{1.5}\n \\begin{array}{c:c:c:c:c}\n no & Sample & Sample \\\\\n& & mean\\ (\\bar{x})\n\\\\ \\hline\n 1 & 3,4,5 & 12\/3 \\\\\n \\hdashline\n 2 & 3,4,6 & 13\/3 \\\\\n \\hdashline\n 3 & 3,4,7 & 14\/3\\\\\n \\hdashline\n 4 & 3,4,8 & 15\/3 \\\\\n \\hdashline\n 5 & 3,4,9 & 16\/3 \\\\\n \\hdashline\n 6 & 3,5,6 & 14\/3 \\\\\n \\hdashline\n 7 & 3,5,7 & 15\/3\\\\\n \\hdashline\n 8 & 3,5,8 & 16\/3 \\\\\n \\hdashline\n 9 & 3,5,9 & 17\/3\\\\\n \\hdashline\n 10 & 3, 6,7 & 16\/3 \\\\\n \\hdashline\n 11 & 3,6,8 & 17\/3 \\\\\n \\hdashline\n 12 & 3,6,9 & 18\/3 \\\\\n \\hdashline\n 13 & 3,7,8 & 18\/3 \\\\\n \\hdashline\n 14 & 3,7,9 & 19\/3 \\\\\n \\hdashline\n 15 & 3,8,9 & 20\/3 \\\\\n \\hdashline\n 16 & 4,5,6 & 15\/3 \\\\\n \\hdashline\n 17 & 4,5,7 & 16\/3 \\\\\n \\hdashline\n 18 & 4,5,8 & 17\/3 \\\\\n \\hdashline\n 19 & 4,5,9 & 18\/3 \\\\\n \\hdashline\n 20 & 4,6,7 & 17\/3 \\\\\n \\hdashline\n 21 & 4,6,8 & 18\/3 \\\\\n \\hdashline\n 22 & 4,6,9 & 19\/3 \\\\\n \\hdashline\n 23 & 4,7,8 & 19\/3 \\\\\n \\hdashline\n 24 & 4,7,9 & 20\/3 \\\\\n \\hdashline\n 25 & 4,8,9 & 21\/3 \\\\\n \\hdashline\n 26 & 5,6,7 & 18\/3 \\\\\n \\hdashline\n 27 & 5,6,8 & 19\/3 \\\\\n \\hdashline\n 28 & 5,6,9 & 20\/3 \\\\\n \\hdashline\n 29 & 5,7,8 & 20\/3 \\\\\n \\hdashline\n 30 & 5,7,9 & 21\/3 \\\\\n \\hdashline\n 31 & 5,8,9 & 22\/3 \\\\\n \\hdashline\n 32 & 6,7,8 & 21\/3 \\\\\n \\hdashline\n 33 & 6,7,9 & 22\/3 \\\\\n \\hdashline\n 34 & 6,8,9 & 23\/3 \\\\\n \\hdashline\n 35 & 7,8,9 & 24\/3 \\\\\n \\hdashline\n\\end{array}"



2.


"\\def\\arraystretch{1.5}\n \\begin{array}{c:c:c:c:c}\n \\bar{X} & f(\\bar{X}) &\\bar{X} f(\\bar{X}) & \\bar{X}^2f(\\bar{X})\n\\\\ \\hline\n 12\/3 & 1\/35 & 12\/105 & 144\/315 \\\\\n \\hdashline\n13\/3 & 1\/35 & 13\/105 & 169\/315 \\\\\n \\hdashline\n 14\/3& 2\/35 & 28\/105 & 392\/315 \\\\\n \\hdashline\n 15\/3 & 3\/35 & 45\/105 & 675\/315 \\\\\n \\hdashline\n 16\/3 & 4\/35 & 64\/105 & 1024\/315\\\\\n \\hdashline\n 17\/3 & 4\/35 & 68\/105 & 1156\/315 \\\\\n \\hdashline\n 18\/3 & 4\/35 & 90\/105 & 1620\/315 \\\\\n \\hdashline\n 19\/3 & 4\/35 & 76\/105 & 1444\/315 \\\\\n \\hdashline\n 20\/3 & 4\/35 & 80\/105 & 1600\/315 \\\\\n \\hdashline\n 21\/3 & 3\/35 & 63\/105 & 1323\/315 \\\\\n \\hdashline\n 22\/3 & 2\/35 & 44\/105 & 968\/315 \\\\\n \\hdashline\n 23\/3 & 1\/35 & 23\/105 & 529\/315 \\\\\n \\hdashline\n 24\/3 & 1\/35 & 24\/105 & 576\/315 \\\\\n \\hdashline\n\\end{array}"



Mean of sampling distribution 


"\\mu_{\\bar{X}}=E(\\bar{X})=\\sum\\bar{X}_if(\\bar{X}_i)=\\dfrac{630}{105}=6=\\mu"



The variance of sampling distribution 


"Var(\\bar{X})=\\sigma^2_{\\bar{X}}=\\sum\\bar{X}_i^2f(\\bar{X}_i)-\\big[\\sum\\bar{X}_if(\\bar{X}_i)\\big]^2""=\\dfrac{11620}{315}-(6)^2=\\dfrac{8}{9}= \\dfrac{\\sigma^2}{n}(\\dfrac{N-n}{N-1})"




"\\sigma_{\\bar{X}}=\\sqrt{\\dfrac{8}{9}}=\\dfrac{2\\sqrt{2}}{3}\\approx0.9428"


3.



Symmetric distribution.




Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment

LATEST TUTORIALS
New on Blog