We have population values 3, 4, 5, 6, 7, 8, 9, population size N=7 and sample size n=3.
Mean of population ( μ ) (\mu) ( μ ) = 3 + 4 + 5 + 6 + 7 + 8 + 9 7 = 6 \dfrac{3+4+5+6+7+8+9}{7}=6 7 3 + 4 + 5 + 6 + 7 + 8 + 9 = 6
Variance of population
σ 2 = Σ ( x i − x ˉ ) 2 n \sigma^2=\dfrac{\Sigma(x_i-\bar{x})^2}{n} σ 2 = n Σ ( x i − x ˉ ) 2 = 1 7 ( 9 + 4 + 1 + 0 + 1 + 4 + 6 ) = 4 =\dfrac{1}{7}(9+4+1+0+1+4+6)=4 = 7 1 ( 9 + 4 + 1 + 0 + 1 + 4 + 6 ) = 4 σ = σ 2 = 4 = 2 \sigma=\sqrt{\sigma^2}=\sqrt{4}=2 σ = σ 2 = 4 = 2 1. Select a random sample of size 4 without replacement. We have a sample distribution of sample mean.
The number of possible samples which can be drawn without replacement is N C n = 7 C 3 = 35. ^{N}C_n=^{7}C_3=35. N C n = 7 C 3 = 35.
n o S a m p l e S a m p l e m e a n ( x ˉ ) 1 3 , 4 , 5 12 / 3 2 3 , 4 , 6 13 / 3 3 3 , 4 , 7 14 / 3 4 3 , 4 , 8 15 / 3 5 3 , 4 , 9 16 / 3 6 3 , 5 , 6 14 / 3 7 3 , 5 , 7 15 / 3 8 3 , 5 , 8 16 / 3 9 3 , 5 , 9 17 / 3 10 3 , 6 , 7 16 / 3 11 3 , 6 , 8 17 / 3 12 3 , 6 , 9 18 / 3 13 3 , 7 , 8 18 / 3 14 3 , 7 , 9 19 / 3 15 3 , 8 , 9 20 / 3 16 4 , 5 , 6 15 / 3 17 4 , 5 , 7 16 / 3 18 4 , 5 , 8 17 / 3 19 4 , 5 , 9 18 / 3 20 4 , 6 , 7 17 / 3 21 4 , 6 , 8 18 / 3 22 4 , 6 , 9 19 / 3 23 4 , 7 , 8 19 / 3 24 4 , 7 , 9 20 / 3 25 4 , 8 , 9 21 / 3 26 5 , 6 , 7 18 / 3 27 5 , 6 , 8 19 / 3 28 5 , 6 , 9 20 / 3 29 5 , 7 , 8 20 / 3 30 5 , 7 , 9 21 / 3 31 5 , 8 , 9 22 / 3 32 6 , 7 , 8 21 / 3 33 6 , 7 , 9 22 / 3 34 6 , 8 , 9 23 / 3 35 7 , 8 , 9 24 / 3 \def\arraystretch{1.5}
\begin{array}{c:c:c:c:c}
no & Sample & Sample \\
& & mean\ (\bar{x})
\\ \hline
1 & 3,4,5 & 12/3 \\
\hdashline
2 & 3,4,6 & 13/3 \\
\hdashline
3 & 3,4,7 & 14/3\\
\hdashline
4 & 3,4,8 & 15/3 \\
\hdashline
5 & 3,4,9 & 16/3 \\
\hdashline
6 & 3,5,6 & 14/3 \\
\hdashline
7 & 3,5,7 & 15/3\\
\hdashline
8 & 3,5,8 & 16/3 \\
\hdashline
9 & 3,5,9 & 17/3\\
\hdashline
10 & 3, 6,7 & 16/3 \\
\hdashline
11 & 3,6,8 & 17/3 \\
\hdashline
12 & 3,6,9 & 18/3 \\
\hdashline
13 & 3,7,8 & 18/3 \\
\hdashline
14 & 3,7,9 & 19/3 \\
\hdashline
15 & 3,8,9 & 20/3 \\
\hdashline
16 & 4,5,6 & 15/3 \\
\hdashline
17 & 4,5,7 & 16/3 \\
\hdashline
18 & 4,5,8 & 17/3 \\
\hdashline
19 & 4,5,9 & 18/3 \\
\hdashline
20 & 4,6,7 & 17/3 \\
\hdashline
21 & 4,6,8 & 18/3 \\
\hdashline
22 & 4,6,9 & 19/3 \\
\hdashline
23 & 4,7,8 & 19/3 \\
\hdashline
24 & 4,7,9 & 20/3 \\
\hdashline
25 & 4,8,9 & 21/3 \\
\hdashline
26 & 5,6,7 & 18/3 \\
\hdashline
27 & 5,6,8 & 19/3 \\
\hdashline
28 & 5,6,9 & 20/3 \\
\hdashline
29 & 5,7,8 & 20/3 \\
\hdashline
30 & 5,7,9 & 21/3 \\
\hdashline
31 & 5,8,9 & 22/3 \\
\hdashline
32 & 6,7,8 & 21/3 \\
\hdashline
33 & 6,7,9 & 22/3 \\
\hdashline
34 & 6,8,9 & 23/3 \\
\hdashline
35 & 7,8,9 & 24/3 \\
\hdashline
\end{array} n o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 S am pl e 3 , 4 , 5 3 , 4 , 6 3 , 4 , 7 3 , 4 , 8 3 , 4 , 9 3 , 5 , 6 3 , 5 , 7 3 , 5 , 8 3 , 5 , 9 3 , 6 , 7 3 , 6 , 8 3 , 6 , 9 3 , 7 , 8 3 , 7 , 9 3 , 8 , 9 4 , 5 , 6 4 , 5 , 7 4 , 5 , 8 4 , 5 , 9 4 , 6 , 7 4 , 6 , 8 4 , 6 , 9 4 , 7 , 8 4 , 7 , 9 4 , 8 , 9 5 , 6 , 7 5 , 6 , 8 5 , 6 , 9 5 , 7 , 8 5 , 7 , 9 5 , 8 , 9 6 , 7 , 8 6 , 7 , 9 6 , 8 , 9 7 , 8 , 9 S am pl e m e an ( x ˉ ) 12/3 13/3 14/3 15/3 16/3 14/3 15/3 16/3 17/3 16/3 17/3 18/3 18/3 19/3 20/3 15/3 16/3 17/3 18/3 17/3 18/3 19/3 19/3 20/3 21/3 18/3 19/3 20/3 20/3 21/3 22/3 21/3 22/3 23/3 24/3
2.
X ˉ f ( X ˉ ) X ˉ f ( X ˉ ) X ˉ 2 f ( X ˉ ) 12 / 3 1 / 35 12 / 105 144 / 315 13 / 3 1 / 35 13 / 105 169 / 315 14 / 3 2 / 35 28 / 105 392 / 315 15 / 3 3 / 35 45 / 105 675 / 315 16 / 3 4 / 35 64 / 105 1024 / 315 17 / 3 4 / 35 68 / 105 1156 / 315 18 / 3 4 / 35 90 / 105 1620 / 315 19 / 3 4 / 35 76 / 105 1444 / 315 20 / 3 4 / 35 80 / 105 1600 / 315 21 / 3 3 / 35 63 / 105 1323 / 315 22 / 3 2 / 35 44 / 105 968 / 315 23 / 3 1 / 35 23 / 105 529 / 315 24 / 3 1 / 35 24 / 105 576 / 315 \def\arraystretch{1.5}
\begin{array}{c:c:c:c:c}
\bar{X} & f(\bar{X}) &\bar{X} f(\bar{X}) & \bar{X}^2f(\bar{X})
\\ \hline
12/3 & 1/35 & 12/105 & 144/315 \\
\hdashline
13/3 & 1/35 & 13/105 & 169/315 \\
\hdashline
14/3& 2/35 & 28/105 & 392/315 \\
\hdashline
15/3 & 3/35 & 45/105 & 675/315 \\
\hdashline
16/3 & 4/35 & 64/105 & 1024/315\\
\hdashline
17/3 & 4/35 & 68/105 & 1156/315 \\
\hdashline
18/3 & 4/35 & 90/105 & 1620/315 \\
\hdashline
19/3 & 4/35 & 76/105 & 1444/315 \\
\hdashline
20/3 & 4/35 & 80/105 & 1600/315 \\
\hdashline
21/3 & 3/35 & 63/105 & 1323/315 \\
\hdashline
22/3 & 2/35 & 44/105 & 968/315 \\
\hdashline
23/3 & 1/35 & 23/105 & 529/315 \\
\hdashline
24/3 & 1/35 & 24/105 & 576/315 \\
\hdashline
\end{array} X ˉ 12/3 13/3 14/3 15/3 16/3 17/3 18/3 19/3 20/3 21/3 22/3 23/3 24/3 f ( X ˉ ) 1/35 1/35 2/35 3/35 4/35 4/35 4/35 4/35 4/35 3/35 2/35 1/35 1/35 X ˉ f ( X ˉ ) 12/105 13/105 28/105 45/105 64/105 68/105 90/105 76/105 80/105 63/105 44/105 23/105 24/105 X ˉ 2 f ( X ˉ ) 144/315 169/315 392/315 675/315 1024/315 1156/315 1620/315 1444/315 1600/315 1323/315 968/315 529/315 576/315
Mean of sampling distribution
μ X ˉ = E ( X ˉ ) = ∑ X ˉ i f ( X ˉ i ) = 630 105 = 6 = μ \mu_{\bar{X}}=E(\bar{X})=\sum\bar{X}_if(\bar{X}_i)=\dfrac{630}{105}=6=\mu μ X ˉ = E ( X ˉ ) = ∑ X ˉ i f ( X ˉ i ) = 105 630 = 6 = μ
The variance of sampling distribution
V a r ( X ˉ ) = σ X ˉ 2 = ∑ X ˉ i 2 f ( X ˉ i ) − [ ∑ X ˉ i f ( X ˉ i ) ] 2 Var(\bar{X})=\sigma^2_{\bar{X}}=\sum\bar{X}_i^2f(\bar{X}_i)-\big[\sum\bar{X}_if(\bar{X}_i)\big]^2 Va r ( X ˉ ) = σ X ˉ 2 = ∑ X ˉ i 2 f ( X ˉ i ) − [ ∑ X ˉ i f ( X ˉ i ) ] 2 = 11620 315 − ( 6 ) 2 = 8 9 = σ 2 n ( N − n N − 1 ) =\dfrac{11620}{315}-(6)^2=\dfrac{8}{9}= \dfrac{\sigma^2}{n}(\dfrac{N-n}{N-1}) = 315 11620 − ( 6 ) 2 = 9 8 = n σ 2 ( N − 1 N − n )
σ X ˉ = 8 9 = 2 2 3 ≈ 0.9428 \sigma_{\bar{X}}=\sqrt{\dfrac{8}{9}}=\dfrac{2\sqrt{2}}{3}\approx0.9428 σ X ˉ = 9 8 = 3 2 2 ≈ 0.9428
3.
Symmetric distribution.
Comments