Random samples of size 3 are taken from a population of the numbers 3, 4,5,6, 7,8,and 9.
1. How many samples are possible? List them and compute
the mean of each sample. 2. Construct the sampling distribution of the sample means.
3. Construct the histogram of the sampling distribution of
the sample means. Describe the shape of the histogram.
We have population values 3, 4, 5, 6, 7, 8, 9, population size N=7 and sample size n=3.
Mean of population "(\\mu)" = "\\dfrac{3+4+5+6+7+8+9}{7}=6"
Variance of population
1. Select a random sample of size 4 without replacement. We have a sample distribution of sample mean.
The number of possible samples which can be drawn without replacement is "^{N}C_n=^{7}C_3=35."
"\\def\\arraystretch{1.5}\n \\begin{array}{c:c:c:c:c}\n no & Sample & Sample \\\\\n& & mean\\ (\\bar{x})\n\\\\ \\hline\n 1 & 3,4,5 & 12\/3 \\\\\n \\hdashline\n 2 & 3,4,6 & 13\/3 \\\\\n \\hdashline\n 3 & 3,4,7 & 14\/3\\\\\n \\hdashline\n 4 & 3,4,8 & 15\/3 \\\\\n \\hdashline\n 5 & 3,4,9 & 16\/3 \\\\\n \\hdashline\n 6 & 3,5,6 & 14\/3 \\\\\n \\hdashline\n 7 & 3,5,7 & 15\/3\\\\\n \\hdashline\n 8 & 3,5,8 & 16\/3 \\\\\n \\hdashline\n 9 & 3,5,9 & 17\/3\\\\\n \\hdashline\n 10 & 3, 6,7 & 16\/3 \\\\\n \\hdashline\n 11 & 3,6,8 & 17\/3 \\\\\n \\hdashline\n 12 & 3,6,9 & 18\/3 \\\\\n \\hdashline\n 13 & 3,7,8 & 18\/3 \\\\\n \\hdashline\n 14 & 3,7,9 & 19\/3 \\\\\n \\hdashline\n 15 & 3,8,9 & 20\/3 \\\\\n \\hdashline\n 16 & 4,5,6 & 15\/3 \\\\\n \\hdashline\n 17 & 4,5,7 & 16\/3 \\\\\n \\hdashline\n 18 & 4,5,8 & 17\/3 \\\\\n \\hdashline\n 19 & 4,5,9 & 18\/3 \\\\\n \\hdashline\n 20 & 4,6,7 & 17\/3 \\\\\n \\hdashline\n 21 & 4,6,8 & 18\/3 \\\\\n \\hdashline\n 22 & 4,6,9 & 19\/3 \\\\\n \\hdashline\n 23 & 4,7,8 & 19\/3 \\\\\n \\hdashline\n 24 & 4,7,9 & 20\/3 \\\\\n \\hdashline\n 25 & 4,8,9 & 21\/3 \\\\\n \\hdashline\n 26 & 5,6,7 & 18\/3 \\\\\n \\hdashline\n 27 & 5,6,8 & 19\/3 \\\\\n \\hdashline\n 28 & 5,6,9 & 20\/3 \\\\\n \\hdashline\n 29 & 5,7,8 & 20\/3 \\\\\n \\hdashline\n 30 & 5,7,9 & 21\/3 \\\\\n \\hdashline\n 31 & 5,8,9 & 22\/3 \\\\\n \\hdashline\n 32 & 6,7,8 & 21\/3 \\\\\n \\hdashline\n 33 & 6,7,9 & 22\/3 \\\\\n \\hdashline\n 34 & 6,8,9 & 23\/3 \\\\\n \\hdashline\n 35 & 7,8,9 & 24\/3 \\\\\n \\hdashline\n\\end{array}"2.
Mean of sampling distribution
The variance of sampling distribution
3.
Symmetric distribution.
Comments
Leave a comment