Question #350064

Find the probanility of getting.

a.fewer than 4 head.

b.exactly 4 head.

C.not more than 4 head.

d.two or more heads.


1
Expert's answer
2022-06-13T15:21:42-0400

Solution:

Let we flip coin 4 times. First we need to find probability of 0-head, 1-head, 2-head, 3-head and 4-head.

Number of possible outcomes: N=2n;N=2^{n}; here nn - number of flips.

Number of ways: nCm=n!(nm)!m!;^{n}C_{m}=\frac{n!}{(n-m)!m!}; here mm - number of heads. So,

4C0=4!(40)!0!=1;^{4}C_{0}=\frac{4!}{(4-0)!0!}=1;

4C1=4!(41)!1!=4;^{4}C_{1}=\frac{4!}{(4-1)!1!}=4;

4C2=4!(42)!2!=6;^{4}C_{2}=\frac{4!}{(4-2)!2!}=6;

4C3=4!(43)!3!=4;^{4}C_{3}=\frac{4!}{(4-3)!3!}=4;

4C4=4!(44)!4!=1;^{4}C_{4}=\frac{4!}{(4-4)!4!}=1;

N=24=16;N=2^{4}=16;

P(0)=116=0.0625P(0)=\frac{1}{16}=0.0625 - probability of 0 head;

P(1)=416=0.25P(1)=\frac{4}{16}=0.25 - probability of 1 head;

P(2)=616=0.375P(2)=\frac{6}{16}=0.375 - probability of 2 heads;

P(3)=416=0.25P(3)=\frac{4}{16}=0.25 - probability of 3 heads;

P(4)=116=0.0625P(4)=\frac{1}{16}=0.0625 - probability of 4 heads.

a) Fewer than 4 heads:

P(m<4)=P(0)+P(1)+P(2)+P(3)=0.0625+0.25+0.375+0.25=0.9375;P(m<4)=P(0)+P(1)+P(2)+P(3)=0.0625+0.25+0.375+0.25=0.9375;

b) Exactly 4 heads:

P(m=4)=P(4)=0.0625;P(m=4)=P(4)=0.0625;

c) Not more than 4 heads:

P(m<=4)=P(0)+P(1)+P(2)+P(3)+P(4)=0.0625+0.25+0.375+0.25+0.0625=1;P(m<=4)=P(0)+P(1)+P(2)+P(3)+P(4)=0.0625+0.25+0.375+0.25+0.0625=1;

d) Two or more heads:

P(m>=2)=P(2)+P(3)+P(4)=0.375+0.25+0.0625=0.6875.P(m>=2)= P(2)+P(3)+P(4)=0.375+0.25+0.0625=0.6875.

Answer:

a) P(m<4)=93.75%;P(m<4)=93.75\%;

b) P(m=4)=6.25%;P(m=4)=6.25\%;

c) P(m<=4)=100%;P(m<=4)=100\%;

d) P(m>=2)=68.75%;P(m>=2)=68.75\%;


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS