Question #349892

Nyanza textile ltd sells six brands of shower-proof jacket. The prices and the numbers sold in week are

Price 18,20,25,27

Number sold 8,6,5,2


Question.

Calculate the Pearson correlation coefficient for the data above. Interprete your results.


1
Expert's answer
2022-06-13T23:08:07-0400

In order to compute the regression coefficients, the following table needs to be used:


XYXYX2Y2188144324642061204003625512562525272547294Sum=90214432078129\def\arraystretch{1.5} \begin{array}{c:c:c:c:c:c} & X & Y & XY & X^2 & Y^2 \\ \hline & 18 & 8 & 144 & 324 & 64 \\ \hdashline & 20 & 6 & 120 & 400 & 36 \\ \hdashline & 25 & 5 & 125 & 625 & 25 \\ \hdashline & 27 & 2 & 54 & 729 & 4 \\ \hdashline Sum= & 90 & 21 & 443 & 2078 & 129 \\ \end{array}




Xˉ=1niXi=904=22.5\bar{X}=\dfrac{1}{n}\sum _{i}X_i=\dfrac{90}{4}=22.5




Yˉ=1niYi=214=5.25\bar{Y}=\dfrac{1}{n}\sum _{i}Y_i=\dfrac{21}{4}=5.25




SSXX=iXi21n(iXi)2SS_{XX}=\sum_iX_i^2-\dfrac{1}{n}(\sum _{i}X_i)^2=20789024=53=2078-\dfrac{90^2}{4}=53




SSYY=iYi21n(iYi)2SS_{YY}=\sum_iY_i^2-\dfrac{1}{n}(\sum _{i}Y_i)^2=129(21)24=18.75=129-\dfrac{(21)^2}{4}=18.75




SSXY=iXiYi1n(iXi)(iYi)SS_{XY}=\sum_iX_iY_i-\dfrac{1}{n}(\sum _{i}X_i)(\sum _{i}Y_i)=44390(21)4=29.5=443-\dfrac{90(21)}{4}=-29.5




r=SSXYSSXXSSYY=29.553(18.75)r=\dfrac{SS_{XY}}{\sqrt{SS_{XX}SS_{YY}}}=\dfrac{-29.5}{\sqrt{53(18.75)}}





=0.9358=-0.9358


Strong negative correlation



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS