Question #349862

With the aid of a table, find the sample Standard Deviation of the following dataset:


X = {2.2, 4.7, 6.3, 5.8, 5.7, 7.2, 2.6, 2.4, 6.1, 6.8}

1
Expert's answer
2022-06-14T12:15:00-0400

Sample mean is  

xˉ=110(2.2+4.7+6.3+5.8+5.7\bar{x}=\dfrac{1}{10}(2.2+ 4.7+6.3+ 5.8+5.7+7.2+2.6+2.4+6.1+6.8)=4.98+7.2+2.6+2.4+6.1+6.8)=4.98

Sample Variance


s2=Σ(xixˉ)2n1s^2=\dfrac{\Sigma(x_i-\bar{x})^2}{n-1}=1101((2.24.98)2+(4.74.98)2=\dfrac{1}{10-1}((2.2-4.98)^2+(4.7-4.98)^2




+(6.34.98)2+(5.84.98)2+(5.74.98)2+(6.3-4.98)^2+(5.8-4.98)^2+(5.7-4.98)^2

+(7.24.98)2+(2.64.98)2+(2.44.98)2+(7.2-4.98)^2+(2.6-4.98)^2+(2.4-4.98)^2

+(6.14.98)2+(6.84.98)2)=32.5569+(6.1-4.98)^2+(6.8-4.98)^2)=\dfrac{32.556}{9}

Sample Standard Deviation


s=s2=32.55691.902s=\sqrt{s^2}=\sqrt{\dfrac{32.556}{9}}\approx1.902

Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS