Question #349666

A dart hits the circular dartboard shown below at a random point. Find the probability that the dart lands in the shaded square region. The radius of the dartboard is 9

in, and each side of the shaded region is 3in.


1
Expert's answer
2022-06-12T17:00:55-0400

Total area=Area of the bigger circle=Ac=π(radiu of the dashboard)2=3.1492=254.34 square in.Total~area= Area ~of~ the ~bigger ~circle= Ac= \pi*(radiu~of~the~dashboard)^2 = 3.14 * 9^2=254.34 ~square~in.


Desired area=(Area of the shaded smaller)2=As=32=9 square in.Desired~area=(Area~of~the~shaded~smaller)^2= As = 3^2=9~square~in.



Then Geometric Probability=Area of the shaded smaller squareArea of the bigger circle=AsAc=9254.34=0.0354Then~Geometric~Probability= \frac{ Area ~of~ the ~shaded ~smaller~ square}{Area~ of ~the~ bigger ~circle}= \cfrac {As}{Ac}= \cfrac {9}{254.34}= 0.0354



Answer: 0.0354

Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS