Question #348567

Your given ∑ 𝑥 = 44 , ∑ 𝑥2 = 174, ∑ 𝑥𝑦 = 1324, in addition you also given the values of y

as:

Y 26 28 24 18 35 24 36 25 31 37 30 32

3a. calculate the Pearson correlation coefficient [7]

3b. estimate the y value associated with x=4 [8].

3c. You are given the mean of 20.3 for a random sample of 90 observations from a normal distribution population with a standard deviation of 3.9. Construct a 95% confidence level and interpret your answer. [3]


1
Expert's answer
2022-06-10T11:11:55-0400
Yˉ=1niYi=112(26+28+24+18+35+24\bar{Y}=\dfrac{1}{n}\sum _{i}Y_i=\dfrac{1}{12}(26 +28+ 24+ 18 +35 +24+36+25+31+37+30+32=1736+ 36 +25 +31+ 37+ 30+ 32=\dfrac{173}{6}


SSXX=iXi21n(iXi)2SS_{XX}=\sum_iX_i^2-\dfrac{1}{n}(\sum _{i}X_i)^2=17444212=383=174-\dfrac{44^2}{12}=\dfrac{38}{3}



iYi2=262+282+242+182+352+242\sum_iY_i^2=26^2 +28^2+ 24^2+ 18^2 +35^2 +24^2

+362+252+312+372+302+322=10336+ 36^2 +25^2 +31^2+ 37^2+ 30^2+ 32^2=10336


SSYY=iYi21n(iYi)2SS_{YY}=\sum_iY_i^2-\dfrac{1}{n}(\sum _{i}Y_i)^2=10336346212=10793=10336-\dfrac{346^2}{12}=\dfrac{1079}{3}





SSXY=iXiYi1n(iXi)(iYi)SS_{XY}=\sum_iX_iY_i-\dfrac{1}{n}(\sum _{i}X_i)(\sum _{i}Y_i)=132444(346)12=1663=1324-\dfrac{44(346)}{12}=\dfrac{166}{3}


3a.


r=SSXYSSXXSSYY=16638(1079)=0.8198r=\dfrac{SS_{XY}}{\sqrt{SS_{XX}SS_{YY}}}=\dfrac{166}{\sqrt{38(1079)}}=0.8198


Strong positive correlation.


3b.


B=SSXYSSXX=16638=4.368421B=\dfrac{SS_{XY}}{SS_{XX}}=\dfrac{166}{38}=4.368421

A=YˉBXˉ=17364.368421(4412)=12.815790A=\bar{Y}-B\bar{X}=\dfrac{173}{6}-4.368421(\dfrac{44}{12})=12.815790

=12.815790=12.815790

y=12.815790+4.368421xy=12.815790+4.368421x

y(4)=12.815790+4.368421(4)=30.29y(4)=12.815790+4.368421(4)=30.29

3c. The critical value for α=0.05\alpha = 0.05 is zc=z1α/2=1.96.z_c = z_{1-\alpha/2} = 1.96.

The corresponding confidence interval is computed as shown below:


CI=(xˉzc×σn,xˉ+zc×σn)CI=(\bar{x}-z_c\times\dfrac{\sigma}{\sqrt{n}},\bar{x}+z_c\times\dfrac{\sigma}{\sqrt{n}})

=(20.31.96×3.990,20.3+1.96×3.990)=(20.3-1.96\times\dfrac{3.9}{\sqrt{90}},20.3+1.96\times\dfrac{3.9}{\sqrt{90}})

=(19.494,21.106)=(19.494, 21.106)

Therefore, based on the data provided, the 95% confidence interval for the population mean is 19.494<μ<21.106,19.494 < \mu < 21.106, which indicates that we are 95% confident that the true population mean μ\mu is contained by the interval (19.494,21.106).(19.494, 21.106).



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS