Question #348515

A population consists of the numbers 5, 20, 9, 4, and 2 with sample size of 3



1
Expert's answer
2022-06-07T04:54:27-0400

We have population values 2,4,5,9,20, population size N=5 and sample size n=3.

Mean of population (μ)(\mu) = 2+4+5+9+205=8\dfrac{2+4+5+9+20}{5}=8

Variance of population 


σ2=Σ(xixˉ)2N=36+16+9+1+1445=41.2\sigma^2=\dfrac{\Sigma(x_i-\bar{x})^2}{N}=\dfrac{36+16+9+1+144}{5}=41.2σ=σ2=41.26.4187\sigma=\sqrt{\sigma^2}=\sqrt{41.2}\approx6.4187


The number of possible samples which can be drawn without replacement is NCn=5C3=10.^{N}C_n=^{5}C_3=10.

noSampleSamplemean (xˉ)12,4,511/322,4,915/332,4,2026/342,5,916/352,5,2027/362,9,2031/374,5,918/384,5,2029/394,9,2033/3105,9,2034/3\def\arraystretch{1.5} \begin{array}{c:c:c:c:c} no & Sample & Sample \\ & & mean\ (\bar{x}) \\ \hline 1 & 2,4,5 & 11/3 \\ \hdashline 2 & 2,4,9 & 15/3 \\ \hdashline 3 & 2,4,20 & 26/3\\ \hdashline 4 & 2,5,9 & 16/3 \\ \hdashline 5 & 2,5,20 & 27/3 \\ \hdashline 6 & 2,9,20 & 31/3 \\ \hdashline 7 & 4,5,9 & 18/3 \\ \hdashline 8 & 4,5,20 & 29/3 \\ \hdashline 9 & 4,9,20 & 33/3 \\ \hdashline 10 & 5,9,20 & 34/3 \\ \hdashline \end{array}




Xˉf(Xˉ)Xˉf(Xˉ)Xˉ2f(Xˉ)11/31/1011/30121/9015/31/1015/30225/9016/31/1016/30256/9018/31/1018/30324/9026/31/1026/30676/9027/31/1027/30729/9029/31/1029/30841/9031/31/1031/30961/9033/31/1033/301089/9034/31/1034/301156/90\def\arraystretch{1.5} \begin{array}{c:c:c:c:c} \bar{X} & f(\bar{X}) &\bar{X} f(\bar{X})& \bar{X}^2f(\bar{X}) \\ \hline 11/3 & 1/10 & 11/30 & 121/90 \\ \hdashline 15/3 & 1/10 & 15/30 & 225/90 \\ \hdashline 16/3 & 1/10 & 16/30 & 256/90 \\ \hdashline 18/3 & 1/10 & 18/30 & 324/90 \\ \hdashline 26/3 & 1/10 & 26/30 & 676/90 \\ \hdashline 27/3 & 1/10 & 27/30 & 729/90 \\ \hdashline 29/3 & 1/10 & 29/30 & 841/90 \\ \hdashline 31/3 & 1/10 & 31/30 & 961/90 \\ \hdashline 33/3 & 1/10 & 33/30 & 1089/90 \\ \hdashline 34/3 & 1/10 & 34/30 & 1156/90 \\ \hdashline \end{array}


Mean of sampling distribution 


μXˉ=E(Xˉ)=Xˉif(Xˉi)=8=μ\mu_{\bar{X}}=E(\bar{X})=\sum\bar{X}_if(\bar{X}_i)=8=\mu



The variance of sampling distribution 


Var(Xˉ)=σXˉ2=Xˉi2f(Xˉi)[Xˉif(Xˉi)]2Var(\bar{X})=\sigma^2_{\bar{X}}=\sum\bar{X}_i^2f(\bar{X}_i)-\big[\sum\bar{X}_if(\bar{X}_i)\big]^2=637890(8)2=10315=σ2n(NnN1)=\dfrac{6378}{90}-(8)^2=\dfrac{103}{15}= \dfrac{\sigma^2}{n}(\dfrac{N-n}{N-1})σXˉ=103152.6204\sigma_{\bar{X}}=\sqrt{\dfrac{103}{15}}\approx2.6204

Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS