In order to compute the regression coefficients, the following table needs to be used:
X Y X Y X 2 Y 2 5 13 65 25 169 6 15 90 36 225 7 18 126 49 324 9 19 171 81 361 12 20 240 144 400 S u m = 39 85 692 335 1479 \def\arraystretch{1.5}
\begin{array}{c:c:c:c:c:c}
& X & Y & XY & X^2 & Y^2 \\ \hline
& 5 & 13 & 65 & 25 & 169 \\
\hdashline
& 6 & 15 & 90 & 36 & 225 \\
\hdashline
& 7 & 18 & 126 & 49 & 324 \\
\hdashline
& 9 & 19 & 171 & 81 & 361 \\
\hdashline
& 12 & 20 & 240 & 144 & 400 \\
\hdashline
Sum= & 39 & 85 & 692 & 335 & 1479 \\
\hdashline
\end{array} S u m = X 5 6 7 9 12 39 Y 13 15 18 19 20 85 X Y 65 90 126 171 240 692 X 2 25 36 49 81 144 335 Y 2 169 225 324 361 400 1479 X ˉ = 1 n ∑ i X i = 62 9 = 6.89 \bar{X}=\dfrac{1}{n}\sum _{i}X_i=\dfrac{62}{9}=6.89 X ˉ = n 1 i ∑ X i = 9 62 = 6.89
Y ˉ = 1 n ∑ i Y i = 89 9 = 9.89 \bar{Y}=\dfrac{1}{n}\sum _{i}Y_i=\dfrac{89}{9}=9.89 Y ˉ = n 1 i ∑ Y i = 9 89 = 9.89
S S X X = ∑ i X i 2 − 1 n ( ∑ i X i ) 2 SS_{XX}=\sum_iX_i^2-\dfrac{1}{n}(\sum _{i}X_i)^2 S S XX = i ∑ X i 2 − n 1 ( i ∑ X i ) 2 = 335 − 3 9 2 5 = 30.8 =335-\dfrac{39^2}{5}=30.8 = 335 − 5 3 9 2 = 30.8
S S Y Y = ∑ i Y i 2 − 1 n ( ∑ i Y i ) 2 SS_{YY}=\sum_iY_i^2-\dfrac{1}{n}(\sum _{i}Y_i)^2 S S YY = i ∑ Y i 2 − n 1 ( i ∑ Y i ) 2 = 1479 − 8 5 2 5 = 34 =1479-\dfrac{85^2}{5}=34 = 1479 − 5 8 5 2 = 34
S S X Y = ∑ i X i Y i − 1 n ( ∑ i X i ) ( ∑ i Y i ) SS_{XY}=\sum_iX_iY_i-\dfrac{1}{n}(\sum _{i}X_i)(\sum _{i}Y_i) S S X Y = i ∑ X i Y i − n 1 ( i ∑ X i ) ( i ∑ Y i ) = 692 − 39 ( 85 ) 5 = 29 =692-\dfrac{39(85)}{5}=29 = 692 − 5 39 ( 85 ) = 29
r = S S X Y S S X X S S Y Y = 29 30.8 ( 34 ) r=\dfrac{SS_{XY}}{\sqrt{SS_{XX}SS_{YY}}}=\dfrac{29}{\sqrt{30.8(34)}} r = S S XX S S YY S S X Y = 30.8 ( 34 ) 29 = 0.896155 =0.896155 = 0.896155
Strong positive correlation.
Comments