Question #348443

Five items was taken from the output of factory. The length and weight of 5 items are given below. Length (meter): 5 6 7 9 12 Weight (KG): 13 15 18 19 20


1
Expert's answer
2022-06-06T13:52:14-0400

In order to compute the regression coefficients, the following table needs to be used:



XYXYX2Y25136525169615903622571812649324919171813611220240144400Sum=39856923351479\def\arraystretch{1.5} \begin{array}{c:c:c:c:c:c} & X & Y & XY & X^2 & Y^2 \\ \hline & 5 & 13 & 65 & 25 & 169 \\ \hdashline & 6 & 15 & 90 & 36 & 225 \\ \hdashline & 7 & 18 & 126 & 49 & 324 \\ \hdashline & 9 & 19 & 171 & 81 & 361 \\ \hdashline & 12 & 20 & 240 & 144 & 400 \\ \hdashline Sum= & 39 & 85 & 692 & 335 & 1479 \\ \hdashline \end{array}Xˉ=1niXi=629=6.89\bar{X}=\dfrac{1}{n}\sum _{i}X_i=\dfrac{62}{9}=6.89





Yˉ=1niYi=899=9.89\bar{Y}=\dfrac{1}{n}\sum _{i}Y_i=\dfrac{89}{9}=9.89





SSXX=iXi21n(iXi)2SS_{XX}=\sum_iX_i^2-\dfrac{1}{n}(\sum _{i}X_i)^2=3353925=30.8=335-\dfrac{39^2}{5}=30.8





SSYY=iYi21n(iYi)2SS_{YY}=\sum_iY_i^2-\dfrac{1}{n}(\sum _{i}Y_i)^2=14798525=34=1479-\dfrac{85^2}{5}=34





SSXY=iXiYi1n(iXi)(iYi)SS_{XY}=\sum_iX_iY_i-\dfrac{1}{n}(\sum _{i}X_i)(\sum _{i}Y_i)=69239(85)5=29=692-\dfrac{39(85)}{5}=29




r=SSXYSSXXSSYY=2930.8(34)r=\dfrac{SS_{XY}}{\sqrt{SS_{XX}SS_{YY}}}=\dfrac{29}{\sqrt{30.8(34)}}=0.896155=0.896155


Strong positive correlation.


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS