Question #347847

1.    Assuming that the samples come from normal distributions, find the margin of error  given the following:

a. n = 10 and X = 28 with s = 4.0, 90% confidence

b. n = 16 and X = 50 with s = 4.2, 95% confidence

c. n = 20 and X = 68.2 with s = 2.5, 90% confidence

d. n = 23 and X = 80.6 with s = 3.2, 95% confidence

e. n = 25 and X = 92.8 with s = 2.6, 99% confidence

 

2.    Using the information in number 2, find the interval estimates of the population mean.


1
Expert's answer
2022-06-07T05:50:52-0400

1.

a.

The critical value for α=0.10,df=n1=9\alpha = 0.10, df=n-1=9 degrees of freedom is tc=z1α/2;n1=1.833113.t_c​=z_{1−α/2;n−1}=1.833113.

E=tc×sn=1.833113×410=2.3187E=t_c\times\dfrac{s}{\sqrt{n}}=1.833113\times\dfrac{4}{\sqrt{10}}=2.3187

b.

The critical value for α=0.05,df=n1=15\alpha = 0.05, df=n-1=15 degrees of freedom is tc=z1α/2;n1=2.131449.t_c​=z_{1−α/2;n−1}=2.131449.

E=tc×sn=2.131449×4.216=2.2380E=t_c\times\dfrac{s}{\sqrt{n}}=2.131449\times\dfrac{4.2}{\sqrt{16}}=2.2380



c.

The critical value for α=0.10,df=n1=19\alpha = 0.10, df=n-1=19 degrees of freedom is tc=z1α/2;n1=1.729133.t_c​=z_{1−α/2;n−1}=1.729133.

E=tc×sn=1.729133×2.520=0.9666E=t_c\times\dfrac{s}{\sqrt{n}}=1.729133\times\dfrac{2.5}{\sqrt{20}}=0.9666


d.

The critical value for α=0.05,df=n1=22\alpha = 0.05, df=n-1=22 degrees of freedom is tc=z1α/2;n1=2.073873.t_c​=z_{1−α/2;n−1}=2.073873.

E=tc×sn=2.073873×3.223=1.3838E=t_c\times\dfrac{s}{\sqrt{n}}=2.073873\times\dfrac{3.2}{\sqrt{23}}=1.3838



e.

The critical value for α=0.01,df=n1=24\alpha = 0.01, df=n-1=24 degrees of freedom is tc=z1α/2;n1=2.79694.t_c​=z_{1−α/2;n−1}=2.79694.

E=tc×sn=2.79694×2.625=1.4544E=t_c\times\dfrac{s}{\sqrt{n}}=2.79694\times\dfrac{2.6}{\sqrt{25}}=1.4544



2.

a.


μ=28±2.3187\mu=28\pm2.3187


(25.6813,30.3187)(25.6813, 30.3187)

b.


μ=50±2.2380\mu=50\pm2.2380


(47.7620,52.2380)(47.7620, 52.2380)

c.


μ=68.2±0.9666\mu=68.2\pm0.9666


(67.2334,69.1666)(67.2334, 69.1666)

d.


μ=80.6±1.3838\mu=80.6\pm1.3838


(79.2162,81.9838)(79.2162, 81.9838)

e.


μ=92.8±1.4544\mu=92.8\pm1.4544



(91.3456,94.2544)(91.3456, 94.2544)


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS