If F(x) 1/39(3x-2)2;0<_x_<3
O: elsewhere
1. Verify that F(x) is a PDF
2. find E(x) and Var(x)
1.
"=[\\dfrac{(3x-2)^3}{3(3)(39)}]\\begin{matrix}\n 3\\\\\n 0\n\\end{matrix}=\\dfrac{343+8}{351}=1, True"
2.
"=\\displaystyle\\int_{0}^{3}\\dfrac{9x^3-12x^2+4x}{39}dx"
"=[\\dfrac{1}{39}(\\dfrac{9x^4}{4}-4x^3+2x^2)]\\begin{matrix}\n 3\\\\\n 0\n\\end{matrix}"
"=\\dfrac{1}{39}(\\dfrac{729}{4}-108+18-0)"
"=\\dfrac{123}{52}"
"=\\displaystyle\\int_{0}^{3}\\dfrac{9x^4-12x^3+4x^2}{39}dx"
"=[\\dfrac{1}{39}(\\dfrac{9x^5}{5}-3x^4+\\dfrac{4x^3}{3})]\\begin{matrix}\n 3\\\\\n 0\n\\end{matrix}"
"=\\dfrac{1}{39}(\\dfrac{2187}{5}-243+36-0)"
"=\\dfrac{384}{65}"
"Var(X)=E(X^2)-(E(X))^2"
"=\\dfrac{384}{65}-(\\dfrac{123}{52})^2=\\dfrac{4227}{13520}"
Comments
Leave a comment