We have population values 50, 52, 53, 54, 56, 57 58, 60, population size N=8 and sample size n=2.
Mean of population ( μ ) (\mu) ( μ ) =
1 8 ( 50 + 52 + 53 + 54 + 56 + 57 + 58 + 60 ) = 55 \dfrac{1}{8}(50+52+53+54+56+57+58+60)=55 8 1 ( 50 + 52 + 53 + 54 + 56 + 57 + 58 + 60 ) = 55
Variance of population
σ 2 = Σ ( x i − x ˉ ) 2 n = 1 8 ( 25 + 9 + 4 + 1 \sigma^2=\dfrac{\Sigma(x_i-\bar{x})^2}{n}=\dfrac{1}{8}(25+9+4+1 σ 2 = n Σ ( x i − x ˉ ) 2 = 8 1 ( 25 + 9 + 4 + 1 + 1 + 4 + 9 + 25 ) = 78 8 = 9.75 +1+4+9+25)=\dfrac{78}{8}=9.75 + 1 + 4 + 9 + 25 ) = 8 78 = 9.75
σ = 9.75 ≈ 3.1225 \sigma=\sqrt{9.75}\approx3.1225 σ = 9.75 ≈ 3.1225 Select a random sample of size 2 without replacement. We have a sample distribution of sample mean.
The number of possible samples which can be drawn without replacement is N C n = 8 C 2 = 28. ^{N}C_n=^{8}C_2=28. N C n = 8 C 2 = 28.
n o S a m p l e S a m p l e m e a n ( x ˉ ) 1 50 , 52 102 / 2 2 50 , 53 103 / 2 3 50 , 54 104 / 2 4 50 , 56 106 / 2 5 50 , 57 107 / 2 6 50 , 58 108 / 2 7 50 , 60 110 / 2 8 52 , 53 105 / 2 9 52 , 54 106 / 2 10 52 , 56 108 / 2 11 52 , 57 109 / 2 12 52 , 58 110 / 2 13 52 , 60 112 / 2 14 53 , 54 107 / 2 15 53 , 56 109 / 2 16 53 , 57 110 / 2 17 53 , 58 111 / 2 18 53 , 60 113 / 2 19 54 , 56 110 / 2 20 54 , 57 111 / 2 21 54 , 58 112 / 2 22 54 , 60 114 / 2 23 56 , 57 113 / 2 24 56 , 58 114 / 2 25 56 , 60 116 / 2 26 57 , 58 115 / 2 27 57 , 60 117 / 2 28 58 , 60 118 / 2 \def\arraystretch{1.5}
\begin{array}{c:c:c:c:c}
no & Sample & Sample \\
& & mean\ (\bar{x})
\\ \hline
1 & 50,52 & 102/2 \\
\hdashline
2 & 50,53 & 103/2 \\
\hdashline
3 & 50,54 & 104/2 \\
\hdashline
4 & 50,56 & 106/2 \\
\hdashline
5 & 50,57 & 107/2 \\
\hdashline
6 & 50,58 & 108/2 \\
\hdashline
7 & 50,60 & 110/2 \\
\hdashline
8 & 52,53 & 105/2 \\
\hdashline
9 & 52,54 & 106/2 \\
\hdashline
10 & 52,56 & 108/2 \\
\hdashline
11 & 52,57 & 109/2 \\
\hdashline
12 & 52,58 & 110/2 \\
\hdashline
13 & 52,60 & 112/2 \\
\hdashline
14 & 53,54 & 107/2 \\
\hdashline
15 & 53,56 & 109/2 \\
\hdashline
16 & 53,57 & 110/2 \\
\hdashline
17 & 53,58 & 111/2 \\
\hdashline
18 & 53,60 & 113/2 \\
\hdashline
19 & 54,56 & 110/2 \\
\hdashline
20 & 54,57 & 111/2 \\
\hdashline
21 & 54,58 & 112/2 \\
\hdashline
22 & 54,60 & 114/2 \\
\hdashline
23 & 56,57 & 113/2 \\
\hdashline
24 & 56,58 & 114/2 \\
\hdashline
25 & 56,60 & 116/2 \\
\hdashline
26 & 57,58 & 115/2 \\
\hdashline
27 & 57,60 & 117/2 \\
\hdashline
28 & 58,60 & 118/2 \\
\hdashline
\end{array} n o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 S am pl e 50 , 52 50 , 53 50 , 54 50 , 56 50 , 57 50 , 58 50 , 60 52 , 53 52 , 54 52 , 56 52 , 57 52 , 58 52 , 60 53 , 54 53 , 56 53 , 57 53 , 58 53 , 60 54 , 56 54 , 57 54 , 58 54 , 60 56 , 57 56 , 58 56 , 60 57 , 58 57 , 60 58 , 60 S am pl e m e an ( x ˉ ) 102/2 103/2 104/2 106/2 107/2 108/2 110/2 105/2 106/2 108/2 109/2 110/2 112/2 107/2 109/2 110/2 111/2 113/2 110/2 111/2 112/2 114/2 113/2 114/2 116/2 115/2 117/2 118/2
X ˉ f ( X ˉ ) X ˉ f ( X ˉ ) X ˉ 2 f ( X ˉ ) 102 / 2 1 / 28 102 / 56 10404 / 112 103 / 2 1 / 28 103 / 56 10609 / 112 104 / 2 1 / 28 104 / 56 10816 / 112 105 / 2 1 / 28 105 / 56 11025 / 112 106 / 2 2 / 28 212 / 56 22472 / 112 107 / 2 2 / 28 214 / 56 22898 / 112 108 / 2 2 / 28 216 / 56 23328 / 112 109 / 2 2 / 28 218 / 56 23762 / 112 110 / 2 4 / 28 440 / 56 48400 / 112 111 / 2 2 / 28 222 / 56 24642 / 112 112 / 2 2 / 28 224 / 56 25088 / 112 113 / 2 2 / 28 226 / 56 25538 / 112 114 / 2 2 / 28 228 / 56 25992 / 112 115 / 2 1 / 28 115 / 56 13225 / 112 116 / 2 1 / 28 116 / 56 13456 / 112 117 / 2 1 / 28 117 / 56 13689 / 112 118 / 2 1 / 28 118 / 56 13924 / 112 \def\arraystretch{1.5}
\begin{array}{c:c:c:c:c}
\bar{X} & f(\bar{X}) &\bar{X} f(\bar{X}) & \bar{X}^2f(\bar{X})
\\ \hline
102/2 & 1/28 & 102/56 & 10404/112 \\
\hdashline
103/2 & 1/28 & 103/56 & 10609/112 \\
\hdashline
104/2 & 1/28 & 104/56 & 10816/112 \\
\hdashline
105/2 & 1/28 & 105/56 & 11025/112 \\
\hdashline
106/2 & 2/28 & 212/56& 22472/112 \\
\hdashline
107/2 & 2/28 & 214/56 & 22898/112 \\
\hdashline
108/2 & 2/28 & 216/56 & 23328/112 \\
\hdashline
109/2 & 2/28 & 218/56 & 23762/112 \\
\hdashline
110/2 & 4/28 & 440/56 & 48400/112 \\
\hdashline
111/2 & 2/28 & 222/56 & 24642/112 \\
\hdashline
112/2 & 2/28 & 224/56 & 25088/112 \\
\hdashline
113/2 & 2/28 & 226/56 & 25538/112 \\
\hdashline
114/2 & 2/28 & 228/56 & 25992/112 \\
\hdashline
115/2 & 1/28 & 115/56 & 13225/112 \\
\hdashline
116/2 & 1/28 & 116/56 & 13456/112 \\
\hdashline
117/2 & 1/28 & 117/56 & 13689/112 \\
\hdashline
118/2 & 1/28 & 118/56 & 13924/112 \\
\hdashline
\end{array} X ˉ 102/2 103/2 104/2 105/2 106/2 107/2 108/2 109/2 110/2 111/2 112/2 113/2 114/2 115/2 116/2 117/2 118/2 f ( X ˉ ) 1/28 1/28 1/28 1/28 2/28 2/28 2/28 2/28 4/28 2/28 2/28 2/28 2/28 1/28 1/28 1/28 1/28 X ˉ f ( X ˉ ) 102/56 103/56 104/56 105/56 212/56 214/56 216/56 218/56 440/56 222/56 224/56 226/56 228/56 115/56 116/56 117/56 118/56 X ˉ 2 f ( X ˉ ) 10404/112 10609/112 10816/112 11025/112 22472/112 22898/112 23328/112 23762/112 48400/112 24642/112 25088/112 25538/112 25992/112 13225/112 13456/112 13689/112 13924/112
Mean of sampling distribution
μ X ˉ = E ( X ˉ ) = ∑ X ˉ i f ( X ˉ i ) = 3080 56 = 55 = μ \mu_{\bar{X}}=E(\bar{X})=\sum\bar{X}_if(\bar{X}_i)=\dfrac{3080}{56}=55=\mu μ X ˉ = E ( X ˉ ) = ∑ X ˉ i f ( X ˉ i ) = 56 3080 = 55 = μ
The variance of sampling distribution
V a r ( X ˉ ) = σ X ˉ 2 = ∑ X ˉ i 2 f ( X ˉ i ) − [ ∑ X ˉ i f ( X ˉ i ) ] 2 Var(\bar{X})=\sigma^2_{\bar{X}}=\sum\bar{X}_i^2f(\bar{X}_i)-\big[\sum\bar{X}_if(\bar{X}_i)\big]^2 Va r ( X ˉ ) = σ X ˉ 2 = ∑ X ˉ i 2 f ( X ˉ i ) − [ ∑ X ˉ i f ( X ˉ i ) ] 2 = 339268 112 − ( 55 ) 2 = 117 28 = σ 2 n ( N − n N − 1 ) =\dfrac{339268}{112}-(55)^2=\dfrac{117}{28}= \dfrac{\sigma^2}{n}(\dfrac{N-n}{N-1}) = 112 339268 − ( 55 ) 2 = 28 117 = n σ 2 ( N − 1 N − n ) σ X ˉ = σ X ˉ 2 = 117 28 ≈ 2.044 \sigma_{\bar{X}}=\sqrt{\sigma^2_{\bar{X}}}=\sqrt{\dfrac{117}{28}}\approx2.044 σ X ˉ = σ X ˉ 2 = 28 117 ≈ 2.044
Comments