We have population values 50, 52, 53, 54, 56, 57 58, 60, population size N=8 and sample size n=2.
Mean of population (μ) =
81(50+52+53+54+56+57+58+60)=55
Variance of population
σ2=nΣ(xi−xˉ)2=81(25+9+4+1+1+4+9+25)=878=9.75
σ=9.75≈3.1225Select a random sample of size 2 without replacement. We have a sample distribution of sample mean.
The number of possible samples which can be drawn without replacement is NCn=8C2=28.
no12345678910111213141516171819202122232425262728Sample50,5250,5350,5450,5650,5750,5850,6052,5352,5452,5652,5752,5852,6053,5453,5653,5753,5853,6054,5654,5754,5854,6056,5756,5856,6057,5857,6058,60Samplemean (xˉ)102/2103/2104/2106/2107/2108/2110/2105/2106/2108/2109/2110/2112/2107/2109/2110/2111/2113/2110/2111/2112/2114/2113/2114/2116/2115/2117/2118/2
Xˉ102/2103/2104/2105/2106/2107/2108/2109/2110/2111/2112/2113/2114/2115/2116/2117/2118/2f(Xˉ)1/281/281/281/282/282/282/282/284/282/282/282/282/281/281/281/281/28Xˉf(Xˉ)102/56103/56104/56105/56212/56214/56216/56218/56440/56222/56224/56226/56228/56115/56116/56117/56118/56Xˉ2f(Xˉ)10404/11210609/11210816/11211025/11222472/11222898/11223328/11223762/11248400/11224642/11225088/11225538/11225992/11213225/11213456/11213689/11213924/112
Mean of sampling distribution
μXˉ=E(Xˉ)=∑Xˉif(Xˉi)=563080=55=μ
The variance of sampling distribution
Var(Xˉ)=σXˉ2=∑Xˉi2f(Xˉi)−[∑Xˉif(Xˉi)]2=112339268−(55)2=28117=nσ2(N−1N−n)σXˉ=σXˉ2=28117≈2.044
Comments