A group of 8 students in your class having the weight of 50, 52, 53, 54, 56, 57 58, and 60.
We have population values 50, 52, 53, 54, 56, 57 58, 60, population size N=8 and sample size n=2.
Mean of population "(\\mu)" =
"\\dfrac{1}{8}(50+52+53+54+56+57+58+60)=55"Variance of population
Select a random sample of size 2 without replacement. We have a sample distribution of sample mean.
The number of possible samples which can be drawn without replacement is "^{N}C_n=^{8}C_2=28."
"\\def\\arraystretch{1.5}\n \\begin{array}{c:c:c:c:c}\n no & Sample & Sample \\\\\n& & mean\\ (\\bar{x})\n\\\\ \\hline\n 1 & 50,52 & 102\/2 \\\\\n \\hdashline\n 2 & 50,53 & 103\/2 \\\\\n \\hdashline\n 3 & 50,54 & 104\/2 \\\\\n \\hdashline\n 4 & 50,56 & 106\/2 \\\\\n \\hdashline\n 5 & 50,57 & 107\/2 \\\\\n \\hdashline\n 6 & 50,58 & 108\/2 \\\\\n \\hdashline\n 7 & 50,60 & 110\/2 \\\\\n \\hdashline\n 8 & 52,53 & 105\/2 \\\\\n \\hdashline\n 9 & 52,54 & 106\/2 \\\\\n \\hdashline\n 10 & 52,56 & 108\/2 \\\\\n \\hdashline\n 11 & 52,57 & 109\/2 \\\\\n \\hdashline\n 12 & 52,58 & 110\/2 \\\\\n \\hdashline\n 13 & 52,60 & 112\/2 \\\\\n \\hdashline\n 14 & 53,54 & 107\/2 \\\\\n \\hdashline\n 15 & 53,56 & 109\/2 \\\\\n \\hdashline\n 16 & 53,57 & 110\/2 \\\\\n \\hdashline\n 17 & 53,58 & 111\/2 \\\\\n \\hdashline\n 18 & 53,60 & 113\/2 \\\\\n \\hdashline\n 19 & 54,56 & 110\/2 \\\\\n \\hdashline\n 20 & 54,57 & 111\/2 \\\\\n \\hdashline\n 21 & 54,58 & 112\/2 \\\\\n \\hdashline\n 22 & 54,60 & 114\/2 \\\\\n \\hdashline\n 23 & 56,57 & 113\/2 \\\\\n \\hdashline\n 24 & 56,58 & 114\/2 \\\\\n \\hdashline\n 25 & 56,60 & 116\/2 \\\\\n \\hdashline\n 26 & 57,58 & 115\/2 \\\\\n \\hdashline\n 27 & 57,60 & 117\/2 \\\\\n \\hdashline\n 28 & 58,60 & 118\/2 \\\\\n \\hdashline\n\\end{array}"Mean of sampling distribution
The variance of sampling distribution
Comments
Leave a comment