P(A∪B)=P(A)+P(B)−P(A∩B)
P(A∩B)=P(A)+P(B)−P(A∪B)
Since P(A)=0.8,P(B)=0.7,0≤P(A∪B)≤1,
P(A∩B)≤min(P(A),P(B)) then
P(A∪B)=P(A)+P(B)−P(A∩B)
0≤P(A)+P(B)−P(A∩B)≤1
0≤0.8+0.7−P(A∪B)≤1
P(A∩B)≤P(B),P(A∩B)≥08+0.7−1
0.5≤P(A∩B)≤0.7a) It is impossible that P(A∩B)=0.1.
b) The smallest possible value of P(A∩B) is 0.5.
c) The largest possible value of P(A∩B) is 0.7.
Comments