Question #346758

A random sample of size 144 is drawn from a population whose distribution, mean, and standard deviation are all unknown. The summary statistics are š‘„Ģ…= 58.2 and s = 2.6.

a. Construct an 80% confidence interval for the population mean μ.

b. Construct a 90% confidence interval for the population mean μ.


1
Expert's answer
2022-06-02T13:58:27-0400

a. The critical value for Ī±=0.20,df=nāˆ’1=143\alpha = 0.20, df=n-1=143 degrees of freedom is tc​=z1āˆ’Ī±/2;nāˆ’1=1.2875t_c​=z_{1āˆ’Ī±/2;nāˆ’1}=1.2875

The corresponding confidence interval is computed as shown below:



CI=(xĖ‰āˆ’tcƗsn,xˉ+tcƗsn)CI=(\bar{x}-t_c\times\dfrac{s}{\sqrt{n}}, \bar{x}+t_c\times\dfrac{s}{\sqrt{n}})=(58.2āˆ’1.2875Ɨ2.6144,58.2+1.2875Ɨ2.6144)=(58.2-1.2875\times\dfrac{2.6}{\sqrt{144}}, 58.2+1.2875\times\dfrac{2.6}{\sqrt{144}})


=(57.921,58.479)=(57.921, 58.479)

Therefore, based on the data provided, the 80% confidence interval for the population mean is 57.291<μ<58.479,57.291 < \mu < 58.479, which indicates that we are 80% confident that the true population mean Ī¼\mu is contained by the interval (57.921,58.479).(57.921, 58.479).


b. The critical value for Ī±=0.10,df=nāˆ’1=143\alpha = 0.10, df=n-1=143 degrees of freedom is tc​=z1āˆ’Ī±/2;nāˆ’1=1.655579t_c​=z_{1āˆ’Ī±/2;nāˆ’1}=1.655579

The corresponding confidence interval is computed as shown below:



CI=(xĖ‰āˆ’tcƗsn,xˉ+tcƗsn)CI=(\bar{x}-t_c\times\dfrac{s}{\sqrt{n}}, \bar{x}+t_c\times\dfrac{s}{\sqrt{n}})=(58.2āˆ’1.655579Ɨ2.6144,=(58.2-1.655579\times\dfrac{2.6}{\sqrt{144}},58.2+1.655579Ɨ2.6144)58.2+1.655579\times\dfrac{2.6}{\sqrt{144}})



=(57.841,58.559)=(57.841, 58.559)

Therefore, based on the data provided, the 90% confidence interval for the population mean is 57.841<μ<58.559,57.841 < \mu < 58.559, which indicates that we are 90% confident that the true population mean Ī¼\mu is contained by the interval (57.841,58.559).(57.841, 58.559).



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS