Let X be a random variable with probability distribution
X -1 0 1 2 3
F(X) 0.125 .50 0.20 0.05 0.125
a) Find E(X) and VAR(X).
b) Find the probability distribution of the random variable Y= 2X+1. Using the
probability distribution of Y determine E(Y) and VAR(Y).
a)
"+0.05(2)+0.125(3)=0.55"
"E(X^2)=0.125(-1)^2+0.50(0)^2+0.20(1)^2"
"+0.05(2)^2+0.125(3)^2=1.65"
"Var(X)=E(X^2)-(E(X))^2"
"=1.65-0.55^2=1.3475"
b)
"+0.05(5)+0.125(7)=2.1"
"E(Y)=2E(X)+1"
"E(Y^2)=0.125(-1)^2+0.50(1)^2+0.20(3)^2"
"+0.05(5)^2+0.125(7)^2=9.8"
"Var(Y)=E(Y^2)-(E(Y))^2"
"=9.8-2.1^2=5.39"
"Var(Y)=(2)^2Var(X)"
Comments
Leave a comment