Question #346616

A group of students got the following scores in a test: 6,9,13,16,18,21. Consider sample size of size 3 that can be drawn from this population.




A. List all the possible samples and the corresponding mean.




B. Construct the samplong distribution of the sample means.




C. Compute for the mean and standard deviation of the sampling distribution of the sample means.

1
Expert's answer
2022-06-01T08:10:36-0400

We have population values 6,9,13,16,18,21, population size N=6 and sample size n=3.

Mean of population (μ)(\mu) = 6+9+13+16+18+216=836\dfrac{6+9+13+16+18+21}{6}=\dfrac{83}{6}

Variance of population 


σ2=Σ(xixˉ)2n=1216(2209+841+25\sigma^2=\dfrac{\Sigma(x_i-\bar{x})^2}{n}=\dfrac{1}{216}(2209+841+25+169+625+1849)=95336+169+625+1849)=\dfrac{953}{36}σ=σ2=953365.1451\sigma=\sqrt{\sigma^2}=\sqrt{\dfrac{953}{36}}\approx5.1451


A. Select a random sample of size 3 without replacement. We have a sample distribution of sample mean.


The number of possible samples which can be drawn without replacement is NCn=6C3=20.^{N}C_n=^{6}C_3=20.

noSampleSamplemean (xˉ)16,9,1328/326,9,1631/336,9,1833/346,9,2136/356,13,1635/366,13,1837/376,13,2140/386,16,1840/396,16,2143/3106,18,2145/3119,13,1638/3129,13,1840/3139,13,2143/3149,16,1843/3159,16,2146/3169,18,2148/31713,16,1847/31813,16,2150/31913,18,2152/32016,18,2155/3\def\arraystretch{1.5} \begin{array}{c:c:c:c:c} no & Sample & Sample \\ & & mean\ (\bar{x}) \\ \hline 1 & 6,9,13 & 28/3 \\ \hdashline 2 & 6,9,16 & 31/3 \\ \hdashline 3 & 6,9,18 & 33/3 \\ \hdashline 4 & 6,9,21 & 36/3 \\ \hdashline 5 & 6,13,16 & 35/3 \\ \hdashline 6 & 6,13,18 & 37/3 \\ \hdashline 7 & 6,13, 21 & 40/3 \\ \hdashline 8 & 6,16,18 & 40/3 \\ \hdashline 9 & 6,16,21 & 43/3 \\ \hdashline 10 & 6, 18,21 & 45/3 \\ \hdashline 11 & 9,13,16 & 38/3 \\ \hdashline 12 & 9, 13,18 & 40/3 \\ \hdashline 13 & 9, 13, 21 & 43/3 \\ \hdashline 14 & 9,16,18 & 43/3 \\ \hdashline 15 & 9,16,21 & 46/3 \\ \hdashline 16 & 9, 18,21 & 48/3 \\ \hdashline 17 & 13, 16,18 & 47/3 \\ \hdashline 18 & 13, 16, 21 & 50/3 \\ \hdashline 19 & 13, 18,21 & 52/3 \\ \hdashline 20 & 16, 18,21 & 55/3 \\ \hdashline \end{array}



B.



Xˉf(Xˉ)Xˉf(Xˉ)Xˉ2f(Xˉ)28/31/2028/60784/18031/31/2031/60961/18033/31/2033/601089/18035/31/2035/601225/18036/31/2036/601296/18037/31/2037/601369/18038/31/2038/601444/18040/33/20120/604800/18043/33/20129/605547/18045/31/2045/602025/18046/31/2046/602116/18047/31/2047/602209/18048/31/2048/602304/18050/31/2050/602500/18052/31/2052/602704/18055/31/2055/603025/180\def\arraystretch{1.5} \begin{array}{c:c:c:c:c} \bar{X} & f(\bar{X}) &\bar{X} f(\bar{X}) & \bar{X}^2f(\bar{X}) \\ \hline 28/3 & 1/20 & 28/60 & 784/180 \\ \hdashline 31/3 & 1/20 & 31/60 & 961/180 \\ \hdashline 33/3 & 1/20 & 33/60 & 1089/180 \\ \hdashline 35/3 & 1/20 & 35/60 & 1225/180 \\ \hdashline 36/3 & 1/20 & 36/60 & 1296/180 \\ \hdashline 37/3 & 1/20 & 37/60 & 1369/180 \\ \hdashline 38/3 & 1/20 & 38/60 & 1444/180 \\ \hdashline 40/3 & 3/20 & 120/60 & 4800/180 \\ \hdashline 43/3 & 3/20 & 129/60 & 5547/180 \\ \hdashline 45/3 & 1/20 & 45/60 & 2025/180 \\ \hdashline 46/3 & 1/20 & 46/60 & 2116/180 \\ \hdashline 47/3 & 1/20 & 47/60 & 2209/180 \\ \hdashline 48/3 & 1/20 & 48/60 & 2304/180 \\ \hdashline 50/3 & 1/20 & 50/60 & 2500/180 \\ \hdashline 52/3 & 1/20 & 52/60 & 2704/180 \\ \hdashline 55/3 & 1/20 & 55/60 & 3025/180 \\ \hdashline \end{array}



Mean of sampling distribution 



μXˉ=E(Xˉ)=Xˉif(Xˉi)=83060=836=μ\mu_{\bar{X}}=E(\bar{X})=\sum\bar{X}_if(\bar{X}_i)=\dfrac{830}{60}=\dfrac{83}{6}=\mu



The variance of sampling distribution 



Var(Xˉ)=σXˉ2=Xˉi2f(Xˉi)[Xˉif(Xˉi)]2Var(\bar{X})=\sigma^2_{\bar{X}}=\sum\bar{X}_i^2f(\bar{X}_i)-\big[\sum\bar{X}_if(\bar{X}_i)\big]^2=35398180(836)2=953180=σ2n(NnN1)=\dfrac{35398}{180}-(\dfrac{83}{6})^2=\dfrac{953}{180}= \dfrac{\sigma^2}{n}(\dfrac{N-n}{N-1})σXˉ=9531802.3010\sigma_{\bar{X}}=\sqrt{\dfrac{953}{180}}\approx2.3010

Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS