Question #345328

our hypothetical population contains the scores 5, 7, 9, and 11. determine the mean and variance of the sampling distribution of the sample mean., given that samples contain two scores drawn from the population with replacement.

1
Expert's answer
2022-05-27T14:42:37-0400

We have population values 5,7,9,11, population size N=4 and sample size n=2.

Mean of population (μ)(\mu) = 5+7+9+114=8\dfrac{5+7+9+11}{4}=8

Variance of population 


σ2=Σ(xixˉ)2n=9+1+1+94=5\sigma^2=\dfrac{\Sigma(x_i-\bar{x})^2}{n}=\dfrac{9+1+1+9}{4}=5



Select a random sample of size 2 with replacement. We have a sample distribution of sample mean.

The number of possible samples which can be drawn with replacement is Nn=42=16.N^n=4^2=16.

noSampleSamplemean (xˉ)15,5525,7635,9745,11857,5667,7777,9887,11999,57109,78119,99129,11101311,581411,791511,9101611,1111\def\arraystretch{1.5} \begin{array}{c:c:c:c:c} no & Sample & Sample \\ & & mean\ (\bar{x}) \\ \hline 1 & 5,5 & 5 \\ \hdashline 2 & 5,7 & 6 \\ \hdashline 3 & 5,9 & 7 \\ \hdashline 4 & 5,11 & 8 \\ \hdashline 5 & 7,5 & 6 \\ \hdashline 6 & 7,7 & 7 \\ \hdashline 7 & 7,9 & 8 \\ \hdashline 8 & 7,11 & 9 \\ \hdashline 9 & 9,5 & 7 \\ \hdashline 10 & 9,7 & 8 \\ \hdashline 11 & 9,9 & 9 \\ \hdashline 12 & 9,11 & 10 \\ \hdashline 13 & 11,5 & 8 \\ \hdashline 14 & 11,7 & 9 \\ \hdashline 15 & 11,9 & 10 \\ \hdashline 16 & 11,11 & 11 \\ \hdashline \end{array}





Xˉf(Xˉ)Xˉf(Xˉ)Xˉ2f(Xˉ)51/165/1625/1662/1612/1672/1673/1621/16147/1684/1632/16256/1693/1627/16243/16102/1620/16200/16111/1611/16121/16\def\arraystretch{1.5} \begin{array}{c:c:c:c:c} \bar{X} & f(\bar{X}) &\bar{X} f(\bar{X}) & \bar{X}^2f(\bar{X}) \\ \hline 5 & 1/16 & 5/16 & 25/16 \\ \hdashline 6 & 2/16 & 12/16 & 72/16 \\ \hdashline 7 & 3/16 & 21/16 & 147/16 \\ \hdashline 8 & 4/16 & 32/16 & 256/16 \\ \hdashline 9 & 3/16 & 27/16 & 243/16 \\ \hdashline 10 & 2/16 & 20/16 & 200/16 \\ \hdashline 11 & 1/16 & 11/16 & 121/16 \\ \hdashline \end{array}



Mean of sampling distribution 



μXˉ=E(Xˉ)=Xˉif(Xˉi)=12816=8=μ\mu_{\bar{X}}=E(\bar{X})=\sum\bar{X}_if(\bar{X}_i)=\dfrac{128}{16}=8=\mu



The variance of sampling distribution 



Var(Xˉ)=σXˉ2=Xˉi2f(Xˉi)[Xˉif(Xˉi)]2Var(\bar{X})=\sigma^2_{\bar{X}}=\sum\bar{X}_i^2f(\bar{X}_i)-\big[\sum\bar{X}_if(\bar{X}_i)\big]^2=106416(8)2=2.5=σ2n=\dfrac{1064}{16}-(8)^2=2.5= \dfrac{\sigma^2}{n}

Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS