Question #345295

A population consists of five numbers 1, 2, 3, 4, 5 and 6. Suppose samples of size 2 are drawn from this population.


(a) Find the mean and variance of the population


(b) Describe the sampling distribution of the sample means.


(c) Find the mean and variance of the sampling distribution of the sample means.



1
Expert's answer
2022-05-27T11:41:58-0400

1.

 We have population values 1,2,3,4,5,61,2,3,4,5,6 population size N=6N=6

μ=1+2+3+4+5+66=3.5\mu=\dfrac{1+2+3+4+5+6}{6}=3.5






σ2=16((13.5)2+(23.5)2+(33.5)2\sigma^2=\dfrac{1}{6}((1-3.5)^2+(2-3.5)^2+(3-3.5)^2+(43.5)2+(53.5)2+(63.5)2)=2.92+(4-3.5)^2+(5-3.5)^2+(6-3.5)^2)=2.92



The number of possible samples which can be drawn without replacement is





(Nn)=(62)=15\dbinom{N}{n}=\dbinom{6}{2}=15






SampleSampleSample meanNo.values(Xˉ)11,21.521,3231,42.541,5351,63.562,32.572,4382,53.592,64103,43.5113,54123,64.5134,54.5144,65155,65.5\def\arraystretch{1.5} \begin{array}{c:c:c} Sample & Sample & Sample \ mean \\ No. & values & (\bar{X}) \\ \hline 1 & 1,2 & 1.5 \\ \hdashline 2 & 1,3 & 2 \\ \hdashline 3 & 1,4 & 2.5\\ \hdashline 4 & 1,5 & 3 \\ \hdashline 5 & 1,6 & 3.5 \\ \hdashline 6 & 2,3 & 2.5 \\ \hdashline 7 & 2,4 & 3 \\ \hdashline 8 & 2,5& 3.5 \\ \hdashline 9 & 2,6 & 4 \\ \hdashline 10 & 3,4 &3.5\\ \hdashline 11 & 3,5 & 4 \\ \hdashline 12 & 3,6 & 4.5 \\ \hdashline 13&4,5 & 4.5 \\ \hdashline 14 & 4,6 & 5 \\ \hdashline 15 & 5,6 &5.5 \\ \hline \end{array}



2.

The sampling distribution of the sample means.




Xˉff(Xˉ)Xˉf(Xˉ)Xˉ2f(Xˉ)1.511/150.10.15211/150.130.2662.522/150.3330.8333322/150.41.23.533/150.72.45422/150.5332.1334.522/150.62.7511/150.3331.6665.511/150.3662.0166Total1513.513.415\def\arraystretch{1.5} \begin{array}{c:c:c:c:c:c} & \bar{X} & f & f(\bar{X}) & \bar{X}f(\bar{X})& \bar{X}^2f(\bar{X}) \\ \hline & 1.5 & 1 & 1/15 &0.1& 0.15 \\ \hdashline & 2& 1 & 1/15 & 0.13 & 0.266 \\ \hdashline & 2.5& 2 & 2/15 & 0.333& 0.8333 \\ \hdashline & 3 & 2 & 2/15 & 0.4& 1.2 \\ \hdashline & 3.5 & 3 & 3/15 & 0.7 & 2.45 \\ \hdashline & 4 & 2 & 2/15& 0.533 & 2.133 \\ \hdashline & 4.5 & 2 & 2/15 & 0.6 & 2.7 \\ \hdashline & 5 & 1 & 1/15 & 0.333 & 1.666 \\ \hdashline & 5.5 & 1 & 1/15 & 0.366 & 2.0166\\ \hdashline Total & & 15 & 1 & 3.5 & 13.415\\ \hline \end{array}




4.



E(Xˉ)=Xˉf(Xˉ)=3.5E(\bar{X})=\sum\bar{X}f(\bar{X})=3.5


The mean of the sampling distribution of the sample means is equal to the mean of the population.




E(Xˉ)=μXˉ=3.5=μE(\bar{X})=\mu_{\bar{X}}=3.5=\mu




Var(Xˉ)=Xˉ2f(Xˉ)(Xˉf(Xˉ))2Var(\bar{X})=\sum\bar{X}^2f(\bar{X})-(\sum\bar{X}f(\bar{X}))^2






=13.415(3.5)2=1.165={13.415}-(3.5)^2=1.165

Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS