We have population values 1,2,3, population size N=3 and sample size n=3.
Mean of population (μ) = 31+2+3=2
Variance of population
σ2=nΣ(xi−xˉ)2=31+0+1=32
σ=σ2=32≈0.8165a) Select a random sample of size 3 without replacement. We have a sample distribution of sample mean.
1. The number of possible samples which can be drawn without replacement is NCn=3C3=1.
2.
no1Sample1,2,3Samplemean (xˉ)2
3.
Xˉ2f(Xˉ)1Xˉf(Xˉ)2Xˉ2f(Xˉ)4
Mean of sampling distribution
μXˉ=E(Xˉ)=∑Xˉif(Xˉi)=2=μ
The variance of sampling distribution
Var(Xˉ)=σXˉ2=∑Xˉi2f(Xˉi)−[∑Xˉif(Xˉi)]2=4−(2)2=0=nσ2(N−1N−n)
σXˉ=5.25≈2.291288
b) Select a random sample of size 3 with replacement. We have a sample distribution of sample mean.
1. The number of possible samples which can be drawn with replacement is Nn=33=27.
no123456789101112131415161718192021222324252627Sample1,1,11,1,21,1,31,2,11,2,21,2,31,3,11,3,21,3,32,1,12,1,22,1,32,2,12,2,22,2,32,3,12,3,22,3,33,1,13,1,23,1,33,2,13,2,23,2,33,3,13,3,23,3,3Samplemean (xˉ)3/34/35/34/35/36/35/36/37/34/35/36/35/36/37/36/37/38/35/36/37/36/37/38/37/38/39/3
3.
Xˉ3/34/35/36/37/38/39/3f(Xˉ)1/273/276/277/276/273/271/27Xˉf(Xˉ)3/8112/8130/8142/8142/8124/819/81Xˉ2f(Xˉ)9/24348/243150/243252/243294/243192/24381/243
Mean of sampling distribution
μXˉ=E(Xˉ)=∑Xˉif(Xˉi)=81162=2=μ
The variance of sampling distribution
Var(Xˉ)=σXˉ2=∑Xˉi2f(Xˉi)−[∑Xˉif(Xˉi)]2=2431026−(2)2=92=nσ2
σXˉ=92=32≈0.4714
Comments
Leave a comment