Consider a population consisting of 1, 2, and 3. Suppose samples of size 3 are drawn from this population with and without replacement.
1. Determine the number of sets of all possible samples.
2. List all the possible samples, and compute the mean of each sample.
3. Construct the sampling distribution of the sample means
We have population values 1,2,3, population size N=3 and sample size n=3.
Mean of population "(\\mu)" = "\\dfrac{1+2+3}{3}=2"
Variance of population
"\\sigma=\\sqrt{\\sigma^2}=\\sqrt{\\dfrac{2}{3}}\\approx0.8165"
a) Select a random sample of size 3 without replacement. We have a sample distribution of sample mean.
1. The number of possible samples which can be drawn without replacement is "^{N}C_n=^{3}C_3=1."
2.
3.
Mean of sampling distribution
"\\mu_{\\bar{X}}=E(\\bar{X})=\\sum\\bar{X}_if(\\bar{X}_i)=2=\\mu"The variance of sampling distribution
"Var(\\bar{X})=\\sigma^2_{\\bar{X}}=\\sum\\bar{X}_i^2f(\\bar{X}_i)-\\big[\\sum\\bar{X}_if(\\bar{X}_i)\\big]^2""=4-(2)^2=0= \\dfrac{\\sigma^2}{n}(\\dfrac{N-n}{N-1})""\\sigma_{\\bar{X}}=\\sqrt{5.25}\\approx2.291288"
b) Select a random sample of size 3 with replacement. We have a sample distribution of sample mean.
1. The number of possible samples which can be drawn with replacement is "N^n=3^3=27."
"\\def\\arraystretch{1.5}\n \\begin{array}{c:c:c:c:c}\n no & Sample & Sample \\\\\n& & mean\\ (\\bar{x})\n\\\\ \\hline\n 1 & 1,1,1 & 3\/3 \\\\\n \\hdashline\n 2 & 1,1,2 & 4\/3 \\\\\n \\hdashline\n 3 & 1,1,3 & 5\/3 \\\\\n \\hdashline\n 4 & 1,2,1 & 4\/3\\\\\n \\hdashline\n 5 & 1,2,2 & 5\/3 \\\\\n \\hdashline\n 6 & 1,2,3 & 6\/3 \\\\\n \\hdashline\n 7 & 1,3,1 & 5\/3 \\\\\n \\hdashline\n 8 & 1,3,2 & 6\/3 \\\\\n \\hdashline\n 9 & 1,3,3 & 7\/3 \\\\\n \\hdashline\n 10 & 2,1,1 & 4\/3 \\\\\n \\hdashline\n 11 & 2,1,2 & 5\/3 \\\\\n \\hdashline\n 12 & 2,1,3 & 6\/3 \\\\\n \\hdashline \n 13 & 2,2,1 & 5\/3 \\\\\n \\hdashline \n 14 & 2,2,2 & 6\/3 \\\\\n \\hdashline \n 15 & 2,2,3 & 7\/3 \\\\\n \\hdashline \n 16 & 2,3,1 & 6\/3 \\\\\n \\hdashline \n 17 & 2,3,2 & 7\/3 \\\\\n \\hdashline \n 18 & 2,3,3 & 8\/3 \\\\\n \\hdashline \n 19 & 3,1,1 & 5\/3 \\\\\n \\hdashline \n 20 & 3,1,2 & 6\/3 \\\\\n \\hdashline \n 21 & 3,1,3 & 7\/3 \\\\\n \\hdashline \n 22 & 3,2,1 & 6\/3 \\\\\n \\hdashline \n 23 & 3,2,2 & 7\/3 \\\\\n \\hdashline \n 24 & 3,2,3 & 8\/3 \\\\\n \\hdashline \n 25 & 3,3,1 & 7\/3 \\\\\n \\hdashline \n 26 & 3,3,2 & 8\/3 \\\\\n \\hdashline \n 27 & 3,3,3 & 9\/3 \\\\\n \\hdashline \n\\end{array}"3.
Mean of sampling distribution
"\\mu_{\\bar{X}}=E(\\bar{X})=\\sum\\bar{X}_if(\\bar{X}_i)=\\dfrac{162}{81}=2=\\mu"The variance of sampling distribution
"Var(\\bar{X})=\\sigma^2_{\\bar{X}}=\\sum\\bar{X}_i^2f(\\bar{X}_i)-\\big[\\sum\\bar{X}_if(\\bar{X}_i)\\big]^2""=\\dfrac{1026}{243}-(2)^2=\\dfrac{2}{9}= \\dfrac{\\sigma^2}{n}""\\sigma_{\\bar{X}}=\\sqrt{\\dfrac{2}{9}}=\\dfrac{\\sqrt{2}}{3}\\approx0.4714"
Comments
Leave a comment