We have population values 1,2,3, population size N=3 and sample size n=3.
Mean of population ( μ ) (\mu) ( μ ) = 1 + 2 + 3 3 = 2 \dfrac{1+2+3}{3}=2 3 1 + 2 + 3 = 2
Variance of population
σ 2 = Σ ( x i − x ˉ ) 2 n = 1 + 0 + 1 3 = 2 3 \sigma^2=\dfrac{\Sigma(x_i-\bar{x})^2}{n}=\dfrac{1+0+1}{3}=\dfrac{2}{3} σ 2 = n Σ ( x i − x ˉ ) 2 = 3 1 + 0 + 1 = 3 2
σ = σ 2 = 2 3 ≈ 0.8165 \sigma=\sqrt{\sigma^2}=\sqrt{\dfrac{2}{3}}\approx0.8165 σ = σ 2 = 3 2 ≈ 0.8165 a) Select a random sample of size 3 without replacement. We have a sample distribution of sample mean.
1. The number of possible samples which can be drawn without replacement is N C n = 3 C 3 = 1. ^{N}C_n=^{3}C_3=1. N C n = 3 C 3 = 1.
2.
n o S a m p l e S a m p l e m e a n ( x ˉ ) 1 1 , 2 , 3 2 \def\arraystretch{1.5}
\begin{array}{c:c:c:c:c}
no & Sample & Sample \\
& & mean\ (\bar{x})
\\ \hline
1 & 1,2,3 & 2 \\
\hdashline
\end{array} n o 1 S am pl e 1 , 2 , 3 S am pl e m e an ( x ˉ ) 2
3.
X ˉ f ( X ˉ ) X ˉ f ( X ˉ ) X ˉ 2 f ( X ˉ ) 2 1 2 4 \def\arraystretch{1.5}
\begin{array}{c:c:c:c:c}
\bar{X} & f(\bar{X}) &\bar{X} f(\bar{X}) & \bar{X}^2f(\bar{X})
\\ \hline
2 & 1 & 2 & 4 \\
\hdashline
\end{array} X ˉ 2 f ( X ˉ ) 1 X ˉ f ( X ˉ ) 2 X ˉ 2 f ( X ˉ ) 4
Mean of sampling distribution
μ X ˉ = E ( X ˉ ) = ∑ X ˉ i f ( X ˉ i ) = 2 = μ \mu_{\bar{X}}=E(\bar{X})=\sum\bar{X}_if(\bar{X}_i)=2=\mu μ X ˉ = E ( X ˉ ) = ∑ X ˉ i f ( X ˉ i ) = 2 = μ
The variance of sampling distribution
V a r ( X ˉ ) = σ X ˉ 2 = ∑ X ˉ i 2 f ( X ˉ i ) − [ ∑ X ˉ i f ( X ˉ i ) ] 2 Var(\bar{X})=\sigma^2_{\bar{X}}=\sum\bar{X}_i^2f(\bar{X}_i)-\big[\sum\bar{X}_if(\bar{X}_i)\big]^2 Va r ( X ˉ ) = σ X ˉ 2 = ∑ X ˉ i 2 f ( X ˉ i ) − [ ∑ X ˉ i f ( X ˉ i ) ] 2 = 4 − ( 2 ) 2 = 0 = σ 2 n ( N − n N − 1 ) =4-(2)^2=0= \dfrac{\sigma^2}{n}(\dfrac{N-n}{N-1}) = 4 − ( 2 ) 2 = 0 = n σ 2 ( N − 1 N − n )
σ X ˉ = 5.25 ≈ 2.291288 \sigma_{\bar{X}}=\sqrt{5.25}\approx2.291288 σ X ˉ = 5.25 ≈ 2.291288
b) Select a random sample of size 3 with replacement. We have a sample distribution of sample mean.
1. The number of possible samples which can be drawn with replacement is N n = 3 3 = 27. N^n=3^3=27. N n = 3 3 = 27.
n o S a m p l e S a m p l e m e a n ( x ˉ ) 1 1 , 1 , 1 3 / 3 2 1 , 1 , 2 4 / 3 3 1 , 1 , 3 5 / 3 4 1 , 2 , 1 4 / 3 5 1 , 2 , 2 5 / 3 6 1 , 2 , 3 6 / 3 7 1 , 3 , 1 5 / 3 8 1 , 3 , 2 6 / 3 9 1 , 3 , 3 7 / 3 10 2 , 1 , 1 4 / 3 11 2 , 1 , 2 5 / 3 12 2 , 1 , 3 6 / 3 13 2 , 2 , 1 5 / 3 14 2 , 2 , 2 6 / 3 15 2 , 2 , 3 7 / 3 16 2 , 3 , 1 6 / 3 17 2 , 3 , 2 7 / 3 18 2 , 3 , 3 8 / 3 19 3 , 1 , 1 5 / 3 20 3 , 1 , 2 6 / 3 21 3 , 1 , 3 7 / 3 22 3 , 2 , 1 6 / 3 23 3 , 2 , 2 7 / 3 24 3 , 2 , 3 8 / 3 25 3 , 3 , 1 7 / 3 26 3 , 3 , 2 8 / 3 27 3 , 3 , 3 9 / 3 \def\arraystretch{1.5}
\begin{array}{c:c:c:c:c}
no & Sample & Sample \\
& & mean\ (\bar{x})
\\ \hline
1 & 1,1,1 & 3/3 \\
\hdashline
2 & 1,1,2 & 4/3 \\
\hdashline
3 & 1,1,3 & 5/3 \\
\hdashline
4 & 1,2,1 & 4/3\\
\hdashline
5 & 1,2,2 & 5/3 \\
\hdashline
6 & 1,2,3 & 6/3 \\
\hdashline
7 & 1,3,1 & 5/3 \\
\hdashline
8 & 1,3,2 & 6/3 \\
\hdashline
9 & 1,3,3 & 7/3 \\
\hdashline
10 & 2,1,1 & 4/3 \\
\hdashline
11 & 2,1,2 & 5/3 \\
\hdashline
12 & 2,1,3 & 6/3 \\
\hdashline
13 & 2,2,1 & 5/3 \\
\hdashline
14 & 2,2,2 & 6/3 \\
\hdashline
15 & 2,2,3 & 7/3 \\
\hdashline
16 & 2,3,1 & 6/3 \\
\hdashline
17 & 2,3,2 & 7/3 \\
\hdashline
18 & 2,3,3 & 8/3 \\
\hdashline
19 & 3,1,1 & 5/3 \\
\hdashline
20 & 3,1,2 & 6/3 \\
\hdashline
21 & 3,1,3 & 7/3 \\
\hdashline
22 & 3,2,1 & 6/3 \\
\hdashline
23 & 3,2,2 & 7/3 \\
\hdashline
24 & 3,2,3 & 8/3 \\
\hdashline
25 & 3,3,1 & 7/3 \\
\hdashline
26 & 3,3,2 & 8/3 \\
\hdashline
27 & 3,3,3 & 9/3 \\
\hdashline
\end{array} n o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 S am pl e 1 , 1 , 1 1 , 1 , 2 1 , 1 , 3 1 , 2 , 1 1 , 2 , 2 1 , 2 , 3 1 , 3 , 1 1 , 3 , 2 1 , 3 , 3 2 , 1 , 1 2 , 1 , 2 2 , 1 , 3 2 , 2 , 1 2 , 2 , 2 2 , 2 , 3 2 , 3 , 1 2 , 3 , 2 2 , 3 , 3 3 , 1 , 1 3 , 1 , 2 3 , 1 , 3 3 , 2 , 1 3 , 2 , 2 3 , 2 , 3 3 , 3 , 1 3 , 3 , 2 3 , 3 , 3 S am pl e m e an ( x ˉ ) 3/3 4/3 5/3 4/3 5/3 6/3 5/3 6/3 7/3 4/3 5/3 6/3 5/3 6/3 7/3 6/3 7/3 8/3 5/3 6/3 7/3 6/3 7/3 8/3 7/3 8/3 9/3
3.
X ˉ f ( X ˉ ) X ˉ f ( X ˉ ) X ˉ 2 f ( X ˉ ) 3 / 3 1 / 27 3 / 81 9 / 243 4 / 3 3 / 27 12 / 81 48 / 243 5 / 3 6 / 27 30 / 81 150 / 243 6 / 3 7 / 27 42 / 81 252 / 243 7 / 3 6 / 27 42 / 81 294 / 243 8 / 3 3 / 27 24 / 81 192 / 243 9 / 3 1 / 27 9 / 81 81 / 243 \def\arraystretch{1.5}
\begin{array}{c:c:c:c:c}
\bar{X} & f(\bar{X}) &\bar{X} f(\bar{X}) & \bar{X}^2f(\bar{X})
\\ \hline
3/3 & 1/27 & 3/81 & 9/243 \\
\hdashline
4/3 & 3/27 & 12/81 & 48/243 \\
\hdashline
5/3 & 6/27 & 30/81 & 150/243 \\
\hdashline
6/3 & 7/27 & 42/81 & 252/243 \\
\hdashline
7/3 & 6/27 & 42/81 & 294/243 \\
\hdashline
8/3 & 3/27 & 24/81 & 192/243 \\
\hdashline
9/3 & 1/27 & 9/81 & 81/243 \\
\hdashline
\end{array} X ˉ 3/3 4/3 5/3 6/3 7/3 8/3 9/3 f ( X ˉ ) 1/27 3/27 6/27 7/27 6/27 3/27 1/27 X ˉ f ( X ˉ ) 3/81 12/81 30/81 42/81 42/81 24/81 9/81 X ˉ 2 f ( X ˉ ) 9/243 48/243 150/243 252/243 294/243 192/243 81/243
Mean of sampling distribution
μ X ˉ = E ( X ˉ ) = ∑ X ˉ i f ( X ˉ i ) = 162 81 = 2 = μ \mu_{\bar{X}}=E(\bar{X})=\sum\bar{X}_if(\bar{X}_i)=\dfrac{162}{81}=2=\mu μ X ˉ = E ( X ˉ ) = ∑ X ˉ i f ( X ˉ i ) = 81 162 = 2 = μ
The variance of sampling distribution
V a r ( X ˉ ) = σ X ˉ 2 = ∑ X ˉ i 2 f ( X ˉ i ) − [ ∑ X ˉ i f ( X ˉ i ) ] 2 Var(\bar{X})=\sigma^2_{\bar{X}}=\sum\bar{X}_i^2f(\bar{X}_i)-\big[\sum\bar{X}_if(\bar{X}_i)\big]^2 Va r ( X ˉ ) = σ X ˉ 2 = ∑ X ˉ i 2 f ( X ˉ i ) − [ ∑ X ˉ i f ( X ˉ i ) ] 2 = 1026 243 − ( 2 ) 2 = 2 9 = σ 2 n =\dfrac{1026}{243}-(2)^2=\dfrac{2}{9}= \dfrac{\sigma^2}{n} = 243 1026 − ( 2 ) 2 = 9 2 = n σ 2
σ X ˉ = 2 9 = 2 3 ≈ 0.4714 \sigma_{\bar{X}}=\sqrt{\dfrac{2}{9}}=\dfrac{\sqrt{2}}{3}\approx0.4714 σ X ˉ = 9 2 = 3 2 ≈ 0.4714
Comments