Answer to Question #344350 in Statistics and Probability for Maria

Question #344350

Consider a population consisting of 1, 2, and 3. Suppose samples of size 3 are drawn from this population with and without replacement.


1. Determine the number of sets of all possible samples.



2. List all the possible samples, and compute the mean of each sample.



3. Construct the sampling distribution of the sample means

1
Expert's answer
2022-05-24T18:13:37-0400

We have population values 1,2,3, population size N=3 and sample size n=3.

Mean of population (μ)(\mu) = 1+2+33=2\dfrac{1+2+3}{3}=2

Variance of population 


σ2=Σ(xixˉ)2n=1+0+13=23\sigma^2=\dfrac{\Sigma(x_i-\bar{x})^2}{n}=\dfrac{1+0+1}{3}=\dfrac{2}{3}


σ=σ2=230.8165\sigma=\sqrt{\sigma^2}=\sqrt{\dfrac{2}{3}}\approx0.8165

a) Select a random sample of size 3 without replacement. We have a sample distribution of sample mean.


1. The number of possible samples which can be drawn without replacement is NCn=3C3=1.^{N}C_n=^{3}C_3=1.


2.


noSampleSamplemean (xˉ)11,2,32\def\arraystretch{1.5} \begin{array}{c:c:c:c:c} no & Sample & Sample \\ & & mean\ (\bar{x}) \\ \hline 1 & 1,2,3 & 2 \\ \hdashline \end{array}



3.


Xˉf(Xˉ)Xˉf(Xˉ)Xˉ2f(Xˉ)2124\def\arraystretch{1.5} \begin{array}{c:c:c:c:c} \bar{X} & f(\bar{X}) &\bar{X} f(\bar{X}) & \bar{X}^2f(\bar{X}) \\ \hline 2 & 1 & 2 & 4 \\ \hdashline \end{array}



Mean of sampling distribution 

μXˉ=E(Xˉ)=Xˉif(Xˉi)=2=μ\mu_{\bar{X}}=E(\bar{X})=\sum\bar{X}_if(\bar{X}_i)=2=\mu



The variance of sampling distribution 

Var(Xˉ)=σXˉ2=Xˉi2f(Xˉi)[Xˉif(Xˉi)]2Var(\bar{X})=\sigma^2_{\bar{X}}=\sum\bar{X}_i^2f(\bar{X}_i)-\big[\sum\bar{X}_if(\bar{X}_i)\big]^2=4(2)2=0=σ2n(NnN1)=4-(2)^2=0= \dfrac{\sigma^2}{n}(\dfrac{N-n}{N-1})

σXˉ=5.252.291288\sigma_{\bar{X}}=\sqrt{5.25}\approx2.291288

b) Select a random sample of size 3 with replacement. We have a sample distribution of sample mean.


1. The number of possible samples which can be drawn with replacement is Nn=33=27.N^n=3^3=27.

noSampleSamplemean (xˉ)11,1,13/321,1,24/331,1,35/341,2,14/351,2,25/361,2,36/371,3,15/381,3,26/391,3,37/3102,1,14/3112,1,25/3122,1,36/3132,2,15/3142,2,26/3152,2,37/3162,3,16/3172,3,27/3182,3,38/3193,1,15/3203,1,26/3213,1,37/3223,2,16/3233,2,27/3243,2,38/3253,3,17/3263,3,28/3273,3,39/3\def\arraystretch{1.5} \begin{array}{c:c:c:c:c} no & Sample & Sample \\ & & mean\ (\bar{x}) \\ \hline 1 & 1,1,1 & 3/3 \\ \hdashline 2 & 1,1,2 & 4/3 \\ \hdashline 3 & 1,1,3 & 5/3 \\ \hdashline 4 & 1,2,1 & 4/3\\ \hdashline 5 & 1,2,2 & 5/3 \\ \hdashline 6 & 1,2,3 & 6/3 \\ \hdashline 7 & 1,3,1 & 5/3 \\ \hdashline 8 & 1,3,2 & 6/3 \\ \hdashline 9 & 1,3,3 & 7/3 \\ \hdashline 10 & 2,1,1 & 4/3 \\ \hdashline 11 & 2,1,2 & 5/3 \\ \hdashline 12 & 2,1,3 & 6/3 \\ \hdashline 13 & 2,2,1 & 5/3 \\ \hdashline 14 & 2,2,2 & 6/3 \\ \hdashline 15 & 2,2,3 & 7/3 \\ \hdashline 16 & 2,3,1 & 6/3 \\ \hdashline 17 & 2,3,2 & 7/3 \\ \hdashline 18 & 2,3,3 & 8/3 \\ \hdashline 19 & 3,1,1 & 5/3 \\ \hdashline 20 & 3,1,2 & 6/3 \\ \hdashline 21 & 3,1,3 & 7/3 \\ \hdashline 22 & 3,2,1 & 6/3 \\ \hdashline 23 & 3,2,2 & 7/3 \\ \hdashline 24 & 3,2,3 & 8/3 \\ \hdashline 25 & 3,3,1 & 7/3 \\ \hdashline 26 & 3,3,2 & 8/3 \\ \hdashline 27 & 3,3,3 & 9/3 \\ \hdashline \end{array}



3.


Xˉf(Xˉ)Xˉf(Xˉ)Xˉ2f(Xˉ)3/31/273/819/2434/33/2712/8148/2435/36/2730/81150/2436/37/2742/81252/2437/36/2742/81294/2438/33/2724/81192/2439/31/279/8181/243\def\arraystretch{1.5} \begin{array}{c:c:c:c:c} \bar{X} & f(\bar{X}) &\bar{X} f(\bar{X}) & \bar{X}^2f(\bar{X}) \\ \hline 3/3 & 1/27 & 3/81 & 9/243 \\ \hdashline 4/3 & 3/27 & 12/81 & 48/243 \\ \hdashline 5/3 & 6/27 & 30/81 & 150/243 \\ \hdashline 6/3 & 7/27 & 42/81 & 252/243 \\ \hdashline 7/3 & 6/27 & 42/81 & 294/243 \\ \hdashline 8/3 & 3/27 & 24/81 & 192/243 \\ \hdashline 9/3 & 1/27 & 9/81 & 81/243 \\ \hdashline \end{array}



Mean of sampling distribution 

μXˉ=E(Xˉ)=Xˉif(Xˉi)=16281=2=μ\mu_{\bar{X}}=E(\bar{X})=\sum\bar{X}_if(\bar{X}_i)=\dfrac{162}{81}=2=\mu



The variance of sampling distribution 

Var(Xˉ)=σXˉ2=Xˉi2f(Xˉi)[Xˉif(Xˉi)]2Var(\bar{X})=\sigma^2_{\bar{X}}=\sum\bar{X}_i^2f(\bar{X}_i)-\big[\sum\bar{X}_if(\bar{X}_i)\big]^2=1026243(2)2=29=σ2n=\dfrac{1026}{243}-(2)^2=\dfrac{2}{9}= \dfrac{\sigma^2}{n}

σXˉ=29=230.4714\sigma_{\bar{X}}=\sqrt{\dfrac{2}{9}}=\dfrac{\sqrt{2}}{3}\approx0.4714


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment