f(x) = kx * e ^ (- x / 2); k is a constant, x > 0 a) Find the value of k for f(x) to be a valid probability function
"\\int xe^{-x\/2}dx"
"u=x, du=dx"
"dv=e^{-x\/2}dx, v=-2e^{-x\/2}"
"\\int xe^{-x\/2}dx=-2xe^{-x\/2}+2\\int e^{-x\/2}dx"
"=-2xe^{-x\/2}-4e^{-x\/2}+C"
"\\displaystyle\\int_{0}^{\\infin}kxe^{-x\/2}dx=k\\lim\\limits_{t\\to \\infin}\\displaystyle\\int_{0}^{t}xe^{-x\/2}dx"
"=k\\lim\\limits_{t\\to \\infin}[-2xe^{-x\/2}-4e^{-x\/2}]\\begin{matrix}\n t \\\\\n 0\n\\end{matrix}"
"=k(-0-0-(-0-4))=4k=1"
"k=\\dfrac{1}{4}"
Comments
Leave a comment