Question #343635

f(x) = kx * e ^ (- x / 2); k is a constant, x > 0 a) Find the value of k for f(x) to be a valid probability function


1
Expert's answer
2022-05-23T16:16:40-0400
f(x)dx=0kxex/2dx=1\displaystyle\int_{-\infin}^{\infin}f(x)dx=\displaystyle\int_{0}^{\infin}kxe^{-x/2}dx=1

xex/2dx\int xe^{-x/2}dx

u=x,du=dxu=x, du=dx

dv=ex/2dx,v=2ex/2dv=e^{-x/2}dx, v=-2e^{-x/2}

xex/2dx=2xex/2+2ex/2dx\int xe^{-x/2}dx=-2xe^{-x/2}+2\int e^{-x/2}dx

=2xex/24ex/2+C=-2xe^{-x/2}-4e^{-x/2}+C

0kxex/2dx=klimt0txex/2dx\displaystyle\int_{0}^{\infin}kxe^{-x/2}dx=k\lim\limits_{t\to \infin}\displaystyle\int_{0}^{t}xe^{-x/2}dx

=klimt[2xex/24ex/2]t0=k\lim\limits_{t\to \infin}[-2xe^{-x/2}-4e^{-x/2}]\begin{matrix} t \\ 0 \end{matrix}

=k(00(04))=4k=1=k(-0-0-(-0-4))=4k=1

k=14k=\dfrac{1}{4}


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS