Question #343428

Using the number 5, 10, 15, 20, 25, and 30 as the element of the population, construct the sampling distribution of the sample means with a sample size of 2. Find the population and sample mean, population and sample variance, and population and sample standard deviation.

1
Expert's answer
2022-05-23T23:20:28-0400

We have population values 5,10,15,20,25,30, population size N=6 and sample size n=2.

Mean of population (μ)(\mu) = 5+10+15+20+25+306=17.5\dfrac{5+10+15+20+25+30}{6}=17.5

Variance of population 


σ2=Σ(xixˉ)2n=16(156.25+56.25+6.25\sigma^2=\dfrac{\Sigma(x_i-\bar{x})^2}{n}=\dfrac{1}{6}(156.25+56.25+6.25+6.25+56.25+156.25)=437.56+6.25+56.25+156.25)=\dfrac{437.5}{6}σ=σ2=437.568.5391\sigma=\sqrt{\sigma^2}=\sqrt{\dfrac{437.5}{6}}\approx8.5391

Select a random sample of size 2 without replacement. We have a sample distribution of sample mean.

The number of possible samples which can be drawn without replacement is NCn=6C2=15.^{N}C_n=^{6}C_2=15.

noSampleSamplemean (xˉ)15,1015/225,1520/235,2025/245,2530/255,3035/2610,1525/2710,2030/2810,2535/2910,3040/21015,2035/21115,2540/21215,3045/21320,2545/21420,3050/21525,3055/2\def\arraystretch{1.5} \begin{array}{c:c:c:c:c} no & Sample & Sample \\ & & mean\ (\bar{x}) \\ \hline 1 & 5,10 & 15/2 \\ \hdashline 2 & 5,15 & 20/2 \\ \hdashline 3 & 5,20 & 25/2 \\ \hdashline 4 & 5,25 & 30/2 \\ \hdashline 5 & 5,30 & 35/2 \\ \hdashline 6 & 10,15 & 25/2 \\ \hdashline 7 & 10,20 & 30/2 \\ \hdashline 8 & 10,25 & 35/2 \\ \hdashline 9 & 10,30 & 40/2 \\ \hdashline 10 & 15,20 & 35/2 \\ \hdashline 11 & 15,25 & 40/2 \\ \hdashline 12 & 15,30 & 45/2 \\ \hdashline 13 & 20,25 & 45/2 \\ \hdashline 14 & 20,30 & 50/2 \\ \hdashline 15 & 25,30 & 55/2 \\ \hdashline \end{array}




Xˉf(Xˉ)Xˉf(Xˉ)Xˉ2f(Xˉ)15/21/153/645/1220/21/154/680/1225/22/1510/6250/1230/22/1512/6360/1235/23/1521/6735/1240/22/1516/6640/1245/22/1518/6810/1250/21/1510/6500/1255/21/1511/6605/12\def\arraystretch{1.5} \begin{array}{c:c:c:c:c} \bar{X} & f(\bar{X}) &\bar{X} f(\bar{X}) & \bar{X}^2f(\bar{X}) \\ \hline 15/2 & 1/15 & 3/6 & 45/12 \\ \hdashline 20/2 & 1/15 & 4/6 & 80/12 \\ \hdashline 25/2 & 2/15 & 10/6 & 250/12 \\ \hdashline 30/2 & 2/15 & 12/6 & 360/12 \\ \hdashline 35/2 & 3/15 & 21/6 & 735/12 \\ \hdashline 40/2 & 2/15 & 16/6 & 640/12 \\ \hdashline 45/2 & 2/15 & 18/6 & 810/12 \\ \hdashline 50/2 & 1/15 & 10/6 & 500/12 \\ \hdashline 55/2 & 1/15 & 11/6 & 605/12 \\ \hdashline \end{array}



Mean of sampling distribution 


μXˉ=E(Xˉ)=Xˉif(Xˉi)=1056=17.5=μ\mu_{\bar{X}}=E(\bar{X})=\sum\bar{X}_if(\bar{X}_i)=\dfrac{105}{6}=17.5=\mu



The variance of sampling distribution 


Var(Xˉ)=σXˉ2=Xˉi2f(Xˉi)[Xˉif(Xˉi)]2Var(\bar{X})=\sigma^2_{\bar{X}}=\sum\bar{X}_i^2f(\bar{X}_i)-\big[\sum\bar{X}_if(\bar{X}_i)\big]^2=402512(17.5)2=1756=σ2n(NnN1)=\dfrac{4025}{12}-(17.5)^2=\dfrac{175}{6}= \dfrac{\sigma^2}{n}(\dfrac{N-n}{N-1})σXˉ=17565.4006\sigma_{\bar{X}}=\sqrt{\dfrac{175}{6}}\approx5.4006

Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS