Answer to Question #343428 in Statistics and Probability for Love

Question #343428

Using the number 5, 10, 15, 20, 25, and 30 as the element of the population, construct the sampling distribution of the sample means with a sample size of 2. Find the population and sample mean, population and sample variance, and population and sample standard deviation.

1
Expert's answer
2022-05-23T23:20:28-0400

We have population values 5,10,15,20,25,30, population size N=6 and sample size n=2.

Mean of population "(\\mu)" = "\\dfrac{5+10+15+20+25+30}{6}=17.5"

Variance of population 


"\\sigma^2=\\dfrac{\\Sigma(x_i-\\bar{x})^2}{n}=\\dfrac{1}{6}(156.25+56.25+6.25""+6.25+56.25+156.25)=\\dfrac{437.5}{6}""\\sigma=\\sqrt{\\sigma^2}=\\sqrt{\\dfrac{437.5}{6}}\\approx8.5391"

Select a random sample of size 2 without replacement. We have a sample distribution of sample mean.

The number of possible samples which can be drawn without replacement is "^{N}C_n=^{6}C_2=15."

"\\def\\arraystretch{1.5}\n \\begin{array}{c:c:c:c:c}\n no & Sample & Sample \\\\\n& & mean\\ (\\bar{x})\n\\\\ \\hline\n 1 & 5,10 & 15\/2 \\\\\n \\hdashline\n 2 & 5,15 & 20\/2 \\\\\n \\hdashline\n 3 & 5,20 & 25\/2 \\\\\n \\hdashline\n 4 & 5,25 & 30\/2 \\\\\n \\hdashline\n 5 & 5,30 & 35\/2 \\\\\n \\hdashline\n 6 & 10,15 & 25\/2 \\\\\n \\hdashline\n 7 & 10,20 & 30\/2 \\\\\n \\hdashline\n 8 & 10,25 & 35\/2 \\\\\n \\hdashline\n 9 & 10,30 & 40\/2 \\\\\n \\hdashline\n 10 & 15,20 & 35\/2 \\\\\n \\hdashline\n 11 & 15,25 & 40\/2 \\\\\n \\hdashline\n 12 & 15,30 & 45\/2 \\\\\n \\hdashline\n 13 & 20,25 & 45\/2 \\\\\n \\hdashline\n 14 & 20,30 & 50\/2 \\\\\n \\hdashline\n 15 & 25,30 & 55\/2 \\\\\n \\hdashline\n\\end{array}"




"\\def\\arraystretch{1.5}\n \\begin{array}{c:c:c:c:c}\n \\bar{X} & f(\\bar{X}) &\\bar{X} f(\\bar{X}) & \\bar{X}^2f(\\bar{X})\n\\\\ \\hline\n 15\/2 & 1\/15 & 3\/6 & 45\/12 \\\\\n \\hdashline\n 20\/2 & 1\/15 & 4\/6 & 80\/12 \\\\\n \\hdashline\n 25\/2 & 2\/15 & 10\/6 & 250\/12 \\\\\n \\hdashline\n 30\/2 & 2\/15 & 12\/6 & 360\/12 \\\\\n \\hdashline\n 35\/2 & 3\/15 & 21\/6 & 735\/12 \\\\\n \\hdashline\n 40\/2 & 2\/15 & 16\/6 & 640\/12 \\\\\n \\hdashline\n 45\/2 & 2\/15 & 18\/6 & 810\/12 \\\\ \\hdashline\n 50\/2 & 1\/15 & 10\/6 & 500\/12 \\\\\n \\hdashline\n 55\/2 & 1\/15 & 11\/6 & 605\/12 \\\\\n \\hdashline\n\\end{array}"



Mean of sampling distribution 


"\\mu_{\\bar{X}}=E(\\bar{X})=\\sum\\bar{X}_if(\\bar{X}_i)=\\dfrac{105}{6}=17.5=\\mu"



The variance of sampling distribution 


"Var(\\bar{X})=\\sigma^2_{\\bar{X}}=\\sum\\bar{X}_i^2f(\\bar{X}_i)-\\big[\\sum\\bar{X}_if(\\bar{X}_i)\\big]^2""=\\dfrac{4025}{12}-(17.5)^2=\\dfrac{175}{6}= \\dfrac{\\sigma^2}{n}(\\dfrac{N-n}{N-1})""\\sigma_{\\bar{X}}=\\sqrt{\\dfrac{175}{6}}\\approx5.4006"

Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment

LATEST TUTORIALS
New on Blog
APPROVED BY CLIENTS