We have population values 5,10,15,20,25,30, population size N=6 and sample size n=2.
Mean of population ( μ ) (\mu) ( μ ) = 5 + 10 + 15 + 20 + 25 + 30 6 = 17.5 \dfrac{5+10+15+20+25+30}{6}=17.5 6 5 + 10 + 15 + 20 + 25 + 30 = 17.5
Variance of population
σ 2 = Σ ( x i − x ˉ ) 2 n = 1 6 ( 156.25 + 56.25 + 6.25 \sigma^2=\dfrac{\Sigma(x_i-\bar{x})^2}{n}=\dfrac{1}{6}(156.25+56.25+6.25 σ 2 = n Σ ( x i − x ˉ ) 2 = 6 1 ( 156.25 + 56.25 + 6.25 + 6.25 + 56.25 + 156.25 ) = 437.5 6 +6.25+56.25+156.25)=\dfrac{437.5}{6} + 6.25 + 56.25 + 156.25 ) = 6 437.5 σ = σ 2 = 437.5 6 ≈ 8.5391 \sigma=\sqrt{\sigma^2}=\sqrt{\dfrac{437.5}{6}}\approx8.5391 σ = σ 2 = 6 437.5 ≈ 8.5391 Select a random sample of size 2 without replacement. We have a sample distribution of sample mean.
The number of possible samples which can be drawn without replacement is N C n = 6 C 2 = 15. ^{N}C_n=^{6}C_2=15. N C n = 6 C 2 = 15.
n o S a m p l e S a m p l e m e a n ( x ˉ ) 1 5 , 10 15 / 2 2 5 , 15 20 / 2 3 5 , 20 25 / 2 4 5 , 25 30 / 2 5 5 , 30 35 / 2 6 10 , 15 25 / 2 7 10 , 20 30 / 2 8 10 , 25 35 / 2 9 10 , 30 40 / 2 10 15 , 20 35 / 2 11 15 , 25 40 / 2 12 15 , 30 45 / 2 13 20 , 25 45 / 2 14 20 , 30 50 / 2 15 25 , 30 55 / 2 \def\arraystretch{1.5}
\begin{array}{c:c:c:c:c}
no & Sample & Sample \\
& & mean\ (\bar{x})
\\ \hline
1 & 5,10 & 15/2 \\
\hdashline
2 & 5,15 & 20/2 \\
\hdashline
3 & 5,20 & 25/2 \\
\hdashline
4 & 5,25 & 30/2 \\
\hdashline
5 & 5,30 & 35/2 \\
\hdashline
6 & 10,15 & 25/2 \\
\hdashline
7 & 10,20 & 30/2 \\
\hdashline
8 & 10,25 & 35/2 \\
\hdashline
9 & 10,30 & 40/2 \\
\hdashline
10 & 15,20 & 35/2 \\
\hdashline
11 & 15,25 & 40/2 \\
\hdashline
12 & 15,30 & 45/2 \\
\hdashline
13 & 20,25 & 45/2 \\
\hdashline
14 & 20,30 & 50/2 \\
\hdashline
15 & 25,30 & 55/2 \\
\hdashline
\end{array} n o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 S am pl e 5 , 10 5 , 15 5 , 20 5 , 25 5 , 30 10 , 15 10 , 20 10 , 25 10 , 30 15 , 20 15 , 25 15 , 30 20 , 25 20 , 30 25 , 30 S am pl e m e an ( x ˉ ) 15/2 20/2 25/2 30/2 35/2 25/2 30/2 35/2 40/2 35/2 40/2 45/2 45/2 50/2 55/2
X ˉ f ( X ˉ ) X ˉ f ( X ˉ ) X ˉ 2 f ( X ˉ ) 15 / 2 1 / 15 3 / 6 45 / 12 20 / 2 1 / 15 4 / 6 80 / 12 25 / 2 2 / 15 10 / 6 250 / 12 30 / 2 2 / 15 12 / 6 360 / 12 35 / 2 3 / 15 21 / 6 735 / 12 40 / 2 2 / 15 16 / 6 640 / 12 45 / 2 2 / 15 18 / 6 810 / 12 50 / 2 1 / 15 10 / 6 500 / 12 55 / 2 1 / 15 11 / 6 605 / 12 \def\arraystretch{1.5}
\begin{array}{c:c:c:c:c}
\bar{X} & f(\bar{X}) &\bar{X} f(\bar{X}) & \bar{X}^2f(\bar{X})
\\ \hline
15/2 & 1/15 & 3/6 & 45/12 \\
\hdashline
20/2 & 1/15 & 4/6 & 80/12 \\
\hdashline
25/2 & 2/15 & 10/6 & 250/12 \\
\hdashline
30/2 & 2/15 & 12/6 & 360/12 \\
\hdashline
35/2 & 3/15 & 21/6 & 735/12 \\
\hdashline
40/2 & 2/15 & 16/6 & 640/12 \\
\hdashline
45/2 & 2/15 & 18/6 & 810/12 \\ \hdashline
50/2 & 1/15 & 10/6 & 500/12 \\
\hdashline
55/2 & 1/15 & 11/6 & 605/12 \\
\hdashline
\end{array} X ˉ 15/2 20/2 25/2 30/2 35/2 40/2 45/2 50/2 55/2 f ( X ˉ ) 1/15 1/15 2/15 2/15 3/15 2/15 2/15 1/15 1/15 X ˉ f ( X ˉ ) 3/6 4/6 10/6 12/6 21/6 16/6 18/6 10/6 11/6 X ˉ 2 f ( X ˉ ) 45/12 80/12 250/12 360/12 735/12 640/12 810/12 500/12 605/12
Mean of sampling distribution
μ X ˉ = E ( X ˉ ) = ∑ X ˉ i f ( X ˉ i ) = 105 6 = 17.5 = μ \mu_{\bar{X}}=E(\bar{X})=\sum\bar{X}_if(\bar{X}_i)=\dfrac{105}{6}=17.5=\mu μ X ˉ = E ( X ˉ ) = ∑ X ˉ i f ( X ˉ i ) = 6 105 = 17.5 = μ
The variance of sampling distribution
V a r ( X ˉ ) = σ X ˉ 2 = ∑ X ˉ i 2 f ( X ˉ i ) − [ ∑ X ˉ i f ( X ˉ i ) ] 2 Var(\bar{X})=\sigma^2_{\bar{X}}=\sum\bar{X}_i^2f(\bar{X}_i)-\big[\sum\bar{X}_if(\bar{X}_i)\big]^2 Va r ( X ˉ ) = σ X ˉ 2 = ∑ X ˉ i 2 f ( X ˉ i ) − [ ∑ X ˉ i f ( X ˉ i ) ] 2 = 4025 12 − ( 17.5 ) 2 = 175 6 = σ 2 n ( N − n N − 1 ) =\dfrac{4025}{12}-(17.5)^2=\dfrac{175}{6}= \dfrac{\sigma^2}{n}(\dfrac{N-n}{N-1}) = 12 4025 − ( 17.5 ) 2 = 6 175 = n σ 2 ( N − 1 N − n ) σ X ˉ = 175 6 ≈ 5.4006 \sigma_{\bar{X}}=\sqrt{\dfrac{175}{6}}\approx5.4006 σ X ˉ = 6 175 ≈ 5.4006
Comments